Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Olfactory signalling in vertebrates and insects: differences and commonalities

Key Points

  • Vertebrates and insects use various chemosensory subsystems to cope with a broad range of chemicals.

  • Vertebrates and insects use large repertoires of receptors to detect odorants. The size of repertoires among species varies considerably.

  • The mechanisms of receptor signalling differ between vertebrates and insects. Vertebrates use metabotropic G protein-coupled receptors (GPCRs), whereas insects use ionotropic receptors that act as ligand-gated ion channels.

  • Insect olfactory receptors have also been suggested to function as GPCRs; however, this idea remains controversial.

  • Vertebrate olfactory neurons have a rich network of feedback and feedforward mechanisms that regulate the cell's sensitivity.

  • Both vertebrates and insects use a combinatorial code to identify and discriminate odours. The basis of this strategy is the one receptor–one neuron hypothesis.

  • In general, each receptor can respond to many odorants — that is, each receptor has a broad receptive range. However, some receptors, particularly those for social cues, are specifically tuned to a single or a few odorants.

Abstract

Vertebrates and insects have evolved complex repertoires of chemosensory receptors to detect and distinguish odours. With a few exceptions, vertebrate chemosensory receptors belong to the family of G protein-coupled receptors that initiate a cascade of cellular signalling events and thereby electrically excite the neuron. Insect receptors, which are structurally and genetically unrelated to vertebrate receptors, are a complex of two distinct molecules that serves both as a receptor for the odorant and as an ion channel that is gated by binding of the odorant. Metabotropic signalling in vertebrates provides a rich panoply of positive and negative regulation, whereas ionotropic signalling in insects enhances processing speed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Olfactory subsystems in vertebrates and insects.
Figure 2: Molecules involved in mammalian olfactory signal transduction.
Figure 3: Signal transduction in mammalian olfactory receptor neurons.
Figure 4: Models of odorant signalling pathways in insects.

Similar content being viewed by others

References

  1. Sato, K. et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006 (2008). The identification of insect ORs as ligand-gated ion channels.

    CAS  PubMed  Google Scholar 

  2. Wicher, D. et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011 (2008). The identification of insect ORs as ligand-gated ion channels and GPCRs.

    CAS  PubMed  Google Scholar 

  3. Benton, R., Vannice, K. S., Gomez-Diaz, C. & Vosshall, L. B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149–162 (2009). The first identification of a family of chemosensory receptors that are phylogenetically related to mammalian glutamate receptors and, therefore, may also be odorant-gated ion channels.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Damann, N., Voets, T. & Nilius, B. TRPs in our senses. Curr. Biol. 18, R880–R889 (2008).

    CAS  PubMed  Google Scholar 

  5. Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006).

    CAS  PubMed  Google Scholar 

  6. Munger, S. D., Leinders-Zufall, T. & Zufall, F. Subsystem organization of the mammalian sense of smell. Annu. Rev. Physiol. 71, 115–140 (2009).

    CAS  PubMed  Google Scholar 

  7. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991). The first identification of an OR gene family.

    CAS  PubMed  Google Scholar 

  8. Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650 (2006). The identification of TAARs as chemosensory receptors in the MOE.

    CAS  PubMed  Google Scholar 

  9. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    CAS  PubMed  Google Scholar 

  10. Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    CAS  PubMed  Google Scholar 

  11. Ryba, N. J. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997).

    CAS  PubMed  Google Scholar 

  12. Riviere, S., Challet, L., Fluegge, D., Spehr, M. & Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459, 574–577 (2009).

    CAS  PubMed  Google Scholar 

  13. Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nature Rev. Genet. 9, 951–963 (2008).

    CAS  PubMed  Google Scholar 

  14. Pluznick, J. L. et al. Functional expression of the olfactory signaling system in the kidney. Proc. Natl Acad. Sci. USA 106, 2059–2064 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    CAS  PubMed  Google Scholar 

  16. Niimura, Y. & Nei, M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc. Natl Acad. Sci. USA 102, 6039–6044 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nature Rev. Neurosci. 5, 263–278 (2004).

    CAS  Google Scholar 

  18. Krautwurst, D., Yau, K.-W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    CAS  PubMed  Google Scholar 

  19. Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Katada, S., Hirokawa, T., Oka, Y., Suwa, M. & Touhara, K. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J. Neurosci. 25, 1806–1815 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato, A., Katada, S. & Touhara, K. Amino acids involved in conformational dynamics and G protein coupling of an odorant receptor: targeting gain-of-function mutation. J. Neurochem. 107, 1261–1270 (2008).

    CAS  PubMed  Google Scholar 

  22. Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nature Neurosci. 3, 1248–1255 (2000).

    CAS  PubMed  Google Scholar 

  23. Zhao, H. et al. Functional expression of a mammalian odorant receptor. Science 279, 237–242 (1998).

    CAS  PubMed  Google Scholar 

  24. Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2, ra9 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Touhara, K. et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl Acad. Sci. USA 96, 4040–4045 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999). A seminal paper that describes a combinatorial coding strategy for odorant detection.

    CAS  PubMed  Google Scholar 

  27. Grosmaitre, X., Vassalli, A., Mombaerts, P., Shepherd, G. M. & Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc. Natl Acad. Sci. USA 103, 1970–1975 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomaru, A. & Kurahashi, T. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell. J. Neurophysiol. 93, 1880–1888 (2005).

    PubMed  Google Scholar 

  30. Firestein, S., Picco, C. & Menini, A. The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J. Physiol. 468, 1–10 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, M., Chen, W. R. & Shepherd, G. M. Electrophysiological characterization of rat and mouse olfactory receptor neurons from an intact epithelial preparation. J. Neurosci. Methods 92, 31–40 (1999).

    CAS  PubMed  Google Scholar 

  32. Reisert, J. & Matthews, H. R. Adaptation of the odour-induced response in frog olfactory receptor cells. J. Physiol. 519, 801–813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Spehr, M. et al. Dual capacity of a human olfactory receptor. Curr. Biol. 14, R832–R833 (2004).

    CAS  PubMed  Google Scholar 

  34. Oka, Y., Omura, M., Kataoka, H. & Touhara, K. Olfactory receptor antagonism between odorants. EMBO J. 23, 120–126 (2004).

    CAS  PubMed  Google Scholar 

  35. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B. & Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature 449, 468–472 (2007).

    CAS  PubMed  Google Scholar 

  36. Man, O., Gilad, Y. & Lancet, D. Prediction of the odorant binding site of olfactory receptor proteins by human–mouse comparisons. Protein Sci. 13, 240–254 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lai, P. C., Singer, M. S. & Crasto, C. J. Structural activation pathways from dynamic olfactory receptor–odorant interactions. Chem. Senses 30, 781–792 (2005).

    CAS  PubMed  Google Scholar 

  38. Floriano, W. B., Vaidehi, N. & Goddard, W. A. III. Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. Chem. Senses 29, 269–290 (2004).

    CAS  PubMed  Google Scholar 

  39. Schmiedeberg, K. et al. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J. Struct. Biol. 159, 400–412 (2007).

    CAS  PubMed  Google Scholar 

  40. Liu, A. H., Zhang, X., Stolovitzky, G. A., Califano, A. & Firestein, S. J. Motif-based construction of a functional map for mammalian olfactory receptors. Genomics 81, 443–456 (2003).

    CAS  PubMed  Google Scholar 

  41. Von Dannecker, L. E., Mercadante, A. F. & Malnic, B. Ric-8B promotes functional expression of odorant receptors. Proc. Natl Acad. Sci. USA 103, 9310–9314 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).

    CAS  PubMed  Google Scholar 

  43. Yoshikawa, K. & Touhara, K. Myr-Ric-8A enhances Gα15-mediated Ca2+ response of vertebrate olfactory receptors. Chem. Senses 34, 15–23 (2009).

    CAS  PubMed  Google Scholar 

  44. Kleene, S. J. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem. Senses 33, 839–859 (2008). An excellent and comprehensive review of the physiology of olfactory neurons.

    CAS  PubMed  Google Scholar 

  45. Breer, H., Boekhoff, I. & Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature 345, 65–68 (1990).

    CAS  PubMed  Google Scholar 

  46. Nakamura, T. & Gold, G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444 (1987).

    CAS  PubMed  Google Scholar 

  47. Frings, S., Seifert, R., Godde, M. & Kaupp, U. B. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15, 169–179 (1995).

    CAS  PubMed  Google Scholar 

  48. Restrepo, D., Miyamoto, T., Bryant, B. P. & Teeter, J. H. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science 249, 1166–1168 (1990).

    CAS  PubMed  Google Scholar 

  49. Leinders-Zufall, T., Rand, M. N., Shepherd, G. M., Greer, C. A. & Zufall, F. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J. Neurosci. 17, 4136–4148 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kleene, S. J. & Gesteland, R. C. Calcium-activated chloride conductance in frog olfactory cilia. J. Neurosci. 11, 3624–3629 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurahashi, T. & Yau, K.-W. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363, 71–74 (1993).

    CAS  PubMed  Google Scholar 

  52. Lowe, G. & Gold, G. H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993). References 51 and 52 are the first reports that receptor currents are composed of a cationic and a Cl current.

    CAS  PubMed  Google Scholar 

  53. Kaneko, H., Putzier, I., Frings, S., Kaupp, U. B. & Gensch, T. Chloride accumulation in mammalian olfactory sensory neurons. J. Neurosci. 24, 7931–7938 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reisert, J., Lai, J., Yau, K. W. & Bradley, J. Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron 45, 553–561 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nickell, W. T., Kleene, N. K. & Kleene, S. J. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J. Physiol. 583, 1005–1020 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).

    CAS  PubMed  Google Scholar 

  57. Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590–594 (2008).

    CAS  PubMed  Google Scholar 

  58. Schroeder, B. C., Cheng, T., Jan, Y. N. & Jan, L. Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019–1029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stephan, A. B. et al. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl Acad. Sci. USA 106, 11776–11781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Reisert, J., Bauer, P. J., Yau, K. W. & Frings, S. The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J. Gen. Physiol. 122, 349–363 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Takeuchi, H. & Kurahashi, T. Mechanism of signal amplification in the olfactory sensory cilia. J. Neurosci. 25, 11084–11091 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pifferi, S. et al. Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc. Natl Acad. Sci. USA 103, 12929–12934 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    CAS  PubMed  Google Scholar 

  64. Zufall, F. & Leinders-Zufall, T. The cellular and molecular basis of odor adaptation. Chem. Senses 25, 473–481 (2000).

    CAS  PubMed  Google Scholar 

  65. Dawson, T. M. et al. β-adrenergic receptor kinase-2 and β-arrestin-2 as mediators of odorant-induced desensitization. Science 259, 825–829 (1993).

    CAS  PubMed  Google Scholar 

  66. Peppel, K. et al. G. protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J. Biol. Chem. 272, 25425–25428 (1997).

    CAS  PubMed  Google Scholar 

  67. Mashukova, A., Spehr, M., Hatt, H. & Neuhaus, E. M. β-arrestin2-mediated internalization of mammalian odorant receptors. J. Neurosci. 26, 9902–9912 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei, J. et al. Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: a mechanism for attenuation of olfactory signals. Neuron 21, 495–504 (1998).

    CAS  PubMed  Google Scholar 

  69. Sinnarajah, S. et al. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 409, 1051–1055 (2001).

    CAS  PubMed  Google Scholar 

  70. Chen, T.-Y. & Yau, K.-W. Direct modulation by Ca2+–calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994).

    CAS  PubMed  Google Scholar 

  71. Reisert, J. & Matthews, H. R. Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J. Gen. Physiol. 112, 529–535 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bhandawat, V., Reisert, J. & Yau, K. W. Elementary response of olfactory receptor neurons to odorants. Science 308, 1931–1934 (2005). This paper shows that olfactory signalling in mammals does not require high amplification.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan, C. et al. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc. Natl Acad. Sci. USA 92, 9677–9681 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Juilfs, D. M. et al. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl Acad. Sci. USA 94, 3388–3395 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cygnar, K. D. & Zhao, H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nature Neurosci. 12, 454–462 (2009).

    CAS  PubMed  Google Scholar 

  76. Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    CAS  PubMed  Google Scholar 

  77. Bönigk, W. et al. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J. Neurosci. 19, 5332–5347 (1999).

    PubMed  PubMed Central  Google Scholar 

  78. Weitz, D. et al. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the β-subunit. EMBO J. 17, 2273–2284 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Grunwald, M. E., Yu, W.-P., Yu, H.-H. & Yau, K.-W. Identification of a domain on the β-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium–calmodulin. J. Biol. Chem. 273, 9148–9157 (1998).

    CAS  PubMed  Google Scholar 

  80. Bradley, J., Bönigk, W., Yau, K.-W. & Frings, S. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nature Neurosci. 7, 705–710 (2004).

    CAS  PubMed  Google Scholar 

  81. Song, Y. et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58, 374–386 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pyrski, M. et al. Sodium/calcium exchanger expression in the mouse and rat olfactory systems. J. Comp. Neurol. 501, 944–958 (2007).

    CAS  PubMed  Google Scholar 

  83. Buiakova, O. I. et al. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons. Proc. Natl Acad. Sci. USA 93, 9858–9863 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kwon, H. J., Koo, J. H., Zufall, F., Leinders-Zufall, T. & Margolis, F. L. Ca extrusion by NCX is compromised in olfactory sensory neurons of OMP mice. PLoS ONE 4, e4260 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Reisert, J., Yau, K. W. & Margolis, F. L. Olfactory marker protein modulates the cAMP kinetics of the odour-induced response in cilia of mouse olfactory receptor neurons. J. Physiol. 585, 731–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kleene, S. J. Limits of calcium clearance by plasma membrane calcium ATPase in olfactory cilia. PLoS ONE 4, e5266 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. He, J., Ma, L., Kim, S., Nakai, J. & Yu, C. R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Holy, T. E., Dulac, C. & Meister, M. Responses of vomeronasal neurons to natural stimuli. Science 289, 1569–1572 (2000).

    CAS  PubMed  Google Scholar 

  89. Hussain, A., Saraiva, L. R. & Korsching, S. I. Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc. Natl Acad. Sci. USA 106, 4313–4318 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Touhara, K. & Vosshall, L. B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 71, 307–332 (2009).

    CAS  PubMed  Google Scholar 

  91. Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    CAS  PubMed  Google Scholar 

  92. Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    CAS  PubMed  Google Scholar 

  93. Gao, Q. & Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60, 31–39 (1999).

    CAS  PubMed  Google Scholar 

  94. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999). References 92–94 were the first to identify odorant receptors in D. melanogaster.

    CAS  PubMed  Google Scholar 

  95. Robertson, H. M., Warr, C. G. & Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100 (Suppl. 2), 14537–14542 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Benton, R., Sachse, S., Michnick, S. W. & Vosshall, L. B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, 0240–0257 (2006). This study provided the first indication that insect ORs are not GPCRs and exhibit a different membrane topology.

    CAS  Google Scholar 

  97. Lundin, C. et al. Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett. 581, 5601–5604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Smart, R. et al. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem. Mol. Biol. 38, 770–780 (2008).

    CAS  PubMed  Google Scholar 

  99. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004). The characterization of Or83b as a broadly expressed co-receptor.

    CAS  PubMed  Google Scholar 

  100. Nakagawa, T., Sukarai, T., Nishioka, T. & Touhara, K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 3007, 1638–1642 (2005). The first indication that insect chemosensory receptors form functional heteromers.

    Google Scholar 

  101. Goldman, A. L., van der Goes van Naters, W., Lessing, D., Warr, C. G. & Carlson, J. R. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661–666 (2005).

    CAS  PubMed  Google Scholar 

  102. Hallem, E. A., Dahanukar, A. & Carlson, J. R. Insect odor and taste receptors. Annu. Rev. Entomol. 51, 113–135 (2006).

    CAS  PubMed  Google Scholar 

  103. Elmore, T., Ignell, R., Carlson, J. R. & Smith, D. P. Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 23, 9906–9912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sakurai, T. et al. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl Acad. Sci. USA 101, 16653–16658 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wetzel, C. H. et al. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl Acad. Sci. USA 98, 9377–9380 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Neuhaus, E. M. et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci. 8, 15–17 (2005).

    CAS  PubMed  Google Scholar 

  107. Cukkemane, A. et al. Subunits act independently in a cyclic nucleotide-activated K+ channel. EMBO Reports 8, 749–755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bönigk, W. et al. An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis. Sci. Signal 2, ra68 (2009).

    PubMed  Google Scholar 

  109. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    CAS  PubMed  Google Scholar 

  110. De Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    CAS  PubMed  Google Scholar 

  111. De Bruyne, M., Clyne, P. J. & Carlson, J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kreher, S. A., Mathew, D., Kim, J. & Carlson, J. R. Translation of sensory input into behavioral output via an olfactory system. Neuron 59, 110–124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004). A landmark analysis of olfactory coding in D. melanogaster by the 'empty neuron' technique.

    CAS  PubMed  Google Scholar 

  114. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Rev. Neurosci. 3, 884–895 (2002).

    CAS  Google Scholar 

  115. Mayer, M. L. Glutamate receptors at atomic resolution. Nature 440, 456–462 (2006).

    CAS  PubMed  Google Scholar 

  116. van der Goes van Naters, W. & Carlson, J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl Acad. Sci. USA 105, 10996–11001 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–293 (2007).

    CAS  PubMed  Google Scholar 

  120. Kim, M. S., Repp, A. & Smith, D. P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150, 711–721 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, P., Atkinson, R., Jones, D. N. & Smith, D. P. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45, 193–200 (2005).

    CAS  PubMed  Google Scholar 

  122. Laughlin, J. D., Ha, T. S., Jones, D. N. & Smith, D. P. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133, 1255–1265 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vassar, R., Ngai, J. & Axel, R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309–318 (1993).

    CAS  PubMed  Google Scholar 

  124. Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993).

    CAS  PubMed  Google Scholar 

  125. Miyamichi, K., Serizawa, S., Kimura, H. M. & Sakano, H. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J. Neurosci. 25, 3586–3592 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mombaerts, P. Axonal wiring in the mouse olfactory system. Annu. Rev. Cell Dev. Biol. 22, 713–737 (2006). A critical and comprehensive review on the instructive role of ORs for axonal targeting of the olfactory bulb.

    CAS  PubMed  Google Scholar 

  127. Mori, K., Takahashi, Y. K., Igarashi, K. M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    CAS  PubMed  Google Scholar 

  128. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997).

    CAS  PubMed  Google Scholar 

  129. Maresh, A., Rodriguez, G. D., Whitman, M. C. & Greer, C. A. Principles of glomerular organization in the human olfactory bulb — implications for odor processing. PLoS ONE 3, e2640 (2008).

    PubMed  PubMed Central  Google Scholar 

  130. Fuss, S. H. & Ray, A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates. Mol. Cell Neurosci. 41, 101–112 (2009).

    CAS  PubMed  Google Scholar 

  131. Serizawa, S. et al. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003).

    CAS  PubMed  Google Scholar 

  132. Ray, A., van der Goes van Naters, W. G., Shiraiwa, T. & Carlson, J. R. Mechanisms of odor receptor gene choice in Drosophila. Neuron 53, 353–369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ray, A., van der Goes van Naters, W. G., Shiraiwa, T. & Carlson, J. R. A regulatory code for neuron-specific odor receptor expression. PLoS. Biol. 6, e125 (2008).

  134. Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998). This paper describes the instructive role of ORs for axonal targeting of the olfactory bulb.

    CAS  PubMed  Google Scholar 

  135. Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A. & Mombaerts, P. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell 117, 833–846 (2004).

    CAS  PubMed  Google Scholar 

  136. Feinstein, P. & Mombaerts, P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004).

    CAS  PubMed  Google Scholar 

  137. Chesler, A. T. et al. A G. protein/cAMP signal cascade is required for axonal convergence into olfactory glomeruli. Proc. Natl Acad. Sci. USA 104, 1039–1044 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pugh, E. N. Jr & Lamb, T. D. in Handbook of Biological Physics (eds Stavenga, D. G., DeGrip, W. J. & Pugh, E. N. Jr) 183–255 (Elsevier Science, Amsterdam, 2000).

    Google Scholar 

  139. Böhmer, M. et al. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 24, 2741–2752 (2005).

    PubMed  PubMed Central  Google Scholar 

  140. Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000). A study on the recording of sensitive cellular responses in the vomeronasal organ to stimulation by pheromones.

    CAS  PubMed  Google Scholar 

  141. Leinders-Zufall, T. et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037 (2004).

    CAS  PubMed  Google Scholar 

  142. Kaissling, K. E. & Priesner, E. Smell threshold of the silkworm. Naturwissenschaften 57, 23–28 (1970) (in German).

    CAS  PubMed  Google Scholar 

  143. Firestein, S. & Werblin, F. S. Gated currents in isolated olfactory receptor neurons of the larval tiger salamander. Proc. Natl Acad. Sci. USA 84, 6292–6296 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yau, K.-W., Lamb, T. D. & Baylor, D. A. Light-induced fluctuations in membrane current of single toad rod outer segments. Nature 269, 78–80 (1977).

    CAS  PubMed  Google Scholar 

  145. Strünker, T. et al. A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Nature Cell Biol. 8, 1149–1154 (2006).

    PubMed  Google Scholar 

  146. Trinh, K. & Storm, D. R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nature Neurosci. 6, 519–525 (2003).

    CAS  PubMed  Google Scholar 

  147. Sam, M. et al. Neuropharmacology. Odorants may arouse instinctive behaviours. Nature 412, 142 (2001).

    CAS  PubMed  Google Scholar 

  148. Leinders-Zufall, T. et al. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl Acad. Sci. USA 104, 14507–14512 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Spehr, M. et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rodriguez, I., Greer, C. A., Mok, M. Y. & Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nature Genet. 26, 18–19 (2000).

    CAS  PubMed  Google Scholar 

  151. Lee, S. J. et al. The vomeronasal organ and adjacent glands express components of signaling cascades found in sensory neurons in the main olfactory system. Mol. Cell 26, 503–513 (2008).

    CAS  Google Scholar 

  152. Levai, O., Feistel, T., Breer, H. & Strotmann, J. Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J. Comp. Neurol. 498, 476–490 (2006).

    CAS  PubMed  Google Scholar 

  153. Shirokova, E., Raguse, J. D., Meyerhof, W. & Krautwurst, D. The human vomeronasal type-1 receptor family — detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB J. 22, 1416–1425 (2008).

    CAS  PubMed  Google Scholar 

  154. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    CAS  PubMed  Google Scholar 

  155. Berghard, A., Buck, L. B. & Liman, E. R. Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc. Natl Acad. Sci. USA 93, 2365–2369 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Jia, C. & Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and Gα) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117–128 (1996).

    CAS  PubMed  Google Scholar 

  157. Zufall, F. & Leinders-Zufall, T. Mammalian pheromone sensing. Curr. Opin. Neurobiol. 17, 483–489 (2007).

    CAS  PubMed  Google Scholar 

  158. Chamero, P. et al. Identification of protein pheromones that promote aggressive behaviour. Nature 450, 899–902 (2007).

    CAS  PubMed  Google Scholar 

  159. Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).

    CAS  PubMed  Google Scholar 

  160. Kimoto, H., Haga, S., Sato, K. & Touhara, K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437, 898–901 (2005).

    CAS  PubMed  Google Scholar 

  161. Kimoto, H. et al. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17, 1879–1884 (2007).

    CAS  PubMed  Google Scholar 

  162. Nodari, F. et al. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28, 6407–6418 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Brennan, P. A. & Zufall, F. Pheromonal communication in vertebrates. Nature 444, 308–315 (2006).

    CAS  PubMed  Google Scholar 

  164. Spletter, M. L. & Luo, L. A new family of odorant receptors in Drosophila. Cell 136, 23–25 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank H. Fried and A. Aho for preparation of the figures and H. Krause for preparing the manuscript. I am particularly grateful to O. Ernst, Humboldt-University, Berlin, Germany, for the GPCR structures in the Supplementary information. Because of space limitations, I was unable to cite all relevant primary literature.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information S1 (box)

Guanylyl cyclase-expressing olfactory receptor neurons (ORNs) (PDF 215 kb)

Supplementary Information S2 (box)

An excursion on G protein-coupled receptors (PDF 191 kb)

Supplementary Information S3 (figure)

Insect pheromones (cVA in Drosophila) bind to specialized pheromone-binding proteins (LUSH in Drosophila). (PDF 133 kb)

Related links

Related links

FURTHER INFORMATION

U. Benjamin Kaup's homepage

Glossary

Odorant

A chemical compound that stimulates the sense of smell. For terrestrial animals, odorants are small, volatile molecules; for aquatic animals, odorants are water soluble.

Pheromone

A chemical substance that is used for communication between members of the same species ('conspecifics'). It is released by an individual and detected by a conspecific.

G protein-coupled receptor

(GPCR). A member of a large family of membrane receptors that initiates a cellular response through G proteins. It threads through the cell membrane seven times, and the transmembrane segments adopt an α-helical secondary structure. Therefore, GPCRs are often referred to as heptahelical or 7-TM receptors.

Chemical receptive range

The number and chemical characteristics of the ligands that bind to an odorant receptor. It may be narrow (for example, only aliphatic alcohols of a certain length) or broad (for example, several different functional groups).

Molecular dynamics simulation

A computational technique that uses numerical methods to predict the structure of a protein from its amino-acid sequence. It is also used to simulate the docking of a ligand to its receptor. As a starting point, previously solved protein structures (for example, of rhodopsin) are used as templates.

Odorant-binding protein

A member of a diverse family of proteins that have been proposed to serve either as odorant scavengers or carriers that deliver the odorant or pheromone to the receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaupp, U. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11, 188–200 (2010). https://doi.org/10.1038/nrn2789

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing