Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

VPS10P-domain receptors — regulators of neuronal viability and function

Key Points

  • Regulated protein transport between the cell surface and distinct intracellular compartments of the endo- and exocytic apparatus is a crucial determinant of cellular function. Proper protein trafficking is particularly relevant for highly polarized cell types, such as neurons.

  • Vacuolar protein sorting 10 protein (VPS10P)-domain receptors are sorting receptors that control the intracellular trafficking of target proteins in neurons. Their functions are crucial for pathways that regulate neuronal viability.

  • Sortilin is a VPS10P-domain receptor that interacts with pro-neurotrophins and their receptor p75NTR. Sortilin's functions are required both for controlled release of neurotrophic factors and for pathways through which neurotrophins signal the death or survival of neurons.

  • Sorting protein-related receptor with A-type repeats (SORLA) is another VPS10P-domain receptor. It prevents the transport of the amyloid precursor protein (APP) into cellular pathways for proteolytic processing to the neurotoxic peptide amyloid-β, the main constituent of senile plaques. Low expression of the receptor results in accelerated APP processing and plaque formation and represents a major risk factor for sporadic Alzheimer's disease.

Abstract

VPS10P-domain receptors, such as SORLA and sortilin, constitute a recently identified class of type-1 receptors that are expressed in neurons. Family members are multifunctional proteins that target a range of ligands, including trophic factors and neuropeptides but also other transmembrane proteins. New findings have revealed unexpected roles for VPS10P-domain receptors as regulators of neuronal viability and function through the regulation of both protein transport and signal transduction. Loss of these activities might contribute to the pathophysiology of devastating disorders of the nervous system, including Alzheimer's disease, affective disorders and post-traumatic neuronal cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and evolutionary conservation of VPS10P-domain receptors.
Figure 2: Cellular trafficking of VPS10P-domain receptors.
Figure 3: Role of sortilin in (pro)neurotrophin action.
Figure 4: Pathways in the processing and signalling of amyloid precursor protein.
Figure 5: Role of SORLA in the trafficking and processing of amyloid precursor protein.

Similar content being viewed by others

References

  1. Marcusson, E. G., Horazdovsky, B. F., Cereghino, J. L., Gharakhanian, E. & Emr, S. D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77, 579–586 (1994).

    CAS  PubMed  Google Scholar 

  2. Hampe, W. et al. A head-activator binding protein is present in hydra in a soluble and a membrane-anchored form. Development 126, 4077–4086 (1999).

    CAS  PubMed  Google Scholar 

  3. Petersen, C. M. et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J. Biol. Chem. 272, 3599–3605 (1997).

    CAS  PubMed  Google Scholar 

  4. Yamazaki, H. et al. Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J. Biol. Chem. 271, 24761–24768 (1996).

    CAS  PubMed  Google Scholar 

  5. Jacobsen, L. et al. Molecular characterization of a novel human hybrid-type receptor that binds the α2-macroglobulin receptor-associated protein. J. Biol. Chem. 271, 31379–31383 (1996).

    CAS  PubMed  Google Scholar 

  6. Hermey, G., Riedel, I. B., Hampe, W., Schaller, H. C. & Hermans-Borgmeyer, I. Identification and characterization of SorCS, a third member of a novel receptor family. Biochem. Biophys. Res. Commun. 266, 347–351 (1999).

    CAS  PubMed  Google Scholar 

  7. Rezgaoui, M. et al. Identification of SorCS2, a novel member of the VPS10 domain containing receptor family, prominently expressed in the developing mouse brain. Mech. Dev. 100, 335–338 (2001).

    CAS  PubMed  Google Scholar 

  8. Hampe, W., Rezgaoui, M., Hermans-Borgmeyer, I. & Schaller, H. C. The genes for the human VPS10 domain-containing receptors are large and contain many small exons. Hum. Genet. 108, 529–536 (2001).

    CAS  PubMed  Google Scholar 

  9. Paiardini, A. & Caputo, V. Insights into the interaction of sortilin with proneurotrophins: a computational approach. Neuropeptides 42, 205–214 (2008).

    CAS  PubMed  Google Scholar 

  10. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet. 39, 168–177 (2007). The first in a series of studies that demonstrated an association between SORL1 and late-onset AD.

    CAS  PubMed  Google Scholar 

  11. Grupe, A. et al. A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. Am. J. Hum. Genet. 78, 78–88 (2006).

    CAS  PubMed  Google Scholar 

  12. Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008).

    CAS  PubMed  Google Scholar 

  13. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    CAS  PubMed  Google Scholar 

  14. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genet. 40, 189–197 (2008).

    CAS  PubMed  Google Scholar 

  15. Clee, S. M. et al. Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nature Genet. 38, 688–693 (2006).

    CAS  PubMed  Google Scholar 

  16. Granhall, C., Park, H. B., Fakhrai-Rad, H. & Luthman, H. High-resolution quantitative trait locus analysis reveals multiple diabetes susceptibility loci mapped to intervals<800 kb in the species-conserved Niddm1i of the GK rat. Genetics 174, 1565–1572 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taira, K. et al. LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler. Thromb. Vasc. Biol. 21, 1501–1506 (2001).

    CAS  PubMed  Google Scholar 

  18. Nilsson, S. K. et al. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry 46, 3896–3904 (2007).

    CAS  PubMed  Google Scholar 

  19. Nilsson, S. K. et al. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J. Biol. Chem. 283, 25920–25927 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nielsen, M. S., Jacobsen, C., Olivecrona, G., Gliemann, J. & Petersen, C. M. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J. Biol. Chem. 274, 8832–8836 (1999).

    CAS  PubMed  Google Scholar 

  21. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Rev. Mol. Cell Biol. 7, 568–579 (2006).

    CAS  Google Scholar 

  22. Nielsen, M. S. et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20, 2180–2190 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobsen, L. et al. Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276, 22788–22796 (2001).

    CAS  PubMed  Google Scholar 

  24. Sarret, P. et al. Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J. Comp. Neurol. 461, 483–505 (2003).

    CAS  PubMed  Google Scholar 

  25. Hermey, G. et al. SorCS1, a member of the novel sorting receptor family, is localized in somata and dendrites of neurons throughout the murine brain. Neurosci. Lett. 313, 83–87 (2001).

    CAS  PubMed  Google Scholar 

  26. Nielsen, M. S. et al. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol. Cell. Biol. 27, 6842–6851 (2007). Demonstrated Golgi-to-endosome sorting by SORLA and SORLA downregulation in response to retromer (SNX1 and VPS35) knock down.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morinville, A. et al. Internalization and trafficking of neurotensin via NTS3 receptors in HT29 cells. Int. J. Biochem. Cell Biol. 36, 2153–2168 (2004).

    CAS  PubMed  Google Scholar 

  28. Mari, M. et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9, 380–393 (2008).

    CAS  PubMed  Google Scholar 

  29. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007). Identified motifs for retromer interaction in the cytoplasmic domains of CI-MPR and sortilin.

    CAS  PubMed  Google Scholar 

  31. Scott, G. K., Fei, H., Thomas, L., Medigeshi, G. R. & Thomas, G. A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J. 25, 4423–4435 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Westergaard, U. B. et al. SorCS3 does not require propeptide cleavage to bind nerve growth factor. FEBS Lett. 579, 1172–1176 (2005).

    CAS  PubMed  Google Scholar 

  33. Nielsen, M. S. et al. Different motifs regulate trafficking of SorCS1 isoforms. Traffic 9, 980–994 (2008).

    CAS  PubMed  Google Scholar 

  34. Hermey, G. et al. Characterization of sorCS1, an alternatively spliced receptor with completely different cytoplasmic domains that mediate different trafficking in cells. J. Biol. Chem. 278, 7390–7396 (2003).

    CAS  PubMed  Google Scholar 

  35. Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev. Neurosci. 4, 299–309 (2003).

    CAS  Google Scholar 

  36. Reichardt, L. F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1545–1564 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Underwood, C. K., Reid, K., May, L. M., Bartlett, P. F. & Coulson, E. J. Palmitoylation of the C-terminal fragment of p75NTR regulates death signaling and is required for subsequent cleavage by γ-secretase. Mol. Cell. Neurosci. 37, 346–358 (2008).

    CAS  PubMed  Google Scholar 

  38. Kenchappa, R. S. et al. Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron 50, 219–232 (2006).

    CAS  PubMed  Google Scholar 

  39. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001). Identified proNTs as cell-death-inducing ligands.

    CAS  PubMed  Google Scholar 

  40. Mowla, S. J. et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 276, 12660–12666 (2001).

    CAS  PubMed  Google Scholar 

  41. Nykjaer, A. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature 427, 843–848 (2004). Demonstrated that sortilin is a high-affinity receptor for proNGF that is required for endocytosis and induction of cell death by proNTs.

    CAS  PubMed  Google Scholar 

  42. Matsumoto, T. et al. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nature Neurosci. 11, 131–133 (2008).

    CAS  PubMed  Google Scholar 

  43. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19, 2069–2080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Teng, H. K. et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aguado, F. et al. BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl co-transporter KCC2. Development 130, 1267–1280 (2003).

    CAS  PubMed  Google Scholar 

  46. Fauchais, A. L. et al. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J. Immunol. 181, 3027–3038 (2008).

    CAS  PubMed  Google Scholar 

  47. Bruno, M. A. & Cuello, A. C. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc. Natl Acad. Sci. USA 103, 6735–6740 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hasan, W., Pedchenko, T., Krizsan-Agbas, D., Baum, L. & Smith, P. G. Sympathetic neurons synthesize and secrete pro-nerve growth factor protein. J. Neurobiol. 57, 38–53 (2003).

    CAS  PubMed  Google Scholar 

  49. Srinivasan, B., Roque, C. H., Hempstead, B. L., Al-Ubaidi, M. R. & Roque, R. S. Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J. Biol. Chem. 279, 41839–41845 (2004).

    CAS  PubMed  Google Scholar 

  50. Domeniconi, M., Hempstead, B. L. & Chao, M. V. Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol. Cell. Neurosci. 34, 271–279 (2007).

    CAS  PubMed  Google Scholar 

  51. Fahnestock, M., Michalski, B., Xu, B. & Coughlin, M. D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. Mol. Cell. Neurosci. 18, 210–220 (2001).

    CAS  PubMed  Google Scholar 

  52. Stoica, G., Lungu, G., Kim, H. T. & Wong, P. K. Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res. 1208, 204–216 (2008).

    CAS  PubMed  Google Scholar 

  53. Harrington, A. W. et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl Acad. Sci. USA 101, 6226–6230 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Beattie, M. S. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36, 375–386 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Volosin, M. et al. Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J. Neurosci. 26, 7756–7766 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Volosin, M. et al. Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J. Neurosci. 28, 9870–9879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yune, T. Y. et al. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J. Neurosci. 27, 7751–7761 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sobottka, B., Reinhardt, D., Brockhaus, M., Jacobsen, H. & Metzger, F. ProNGF inhibits NGF-mediated TrkA activation in PC12 cells. J. Neurochem. 15 Sep 2008 (doi:10.1111/j.1471-4159.2008.05690.x).

    CAS  PubMed  Google Scholar 

  59. Provenzano, M. J., Xu, N., Ver Meer, M. R., Clark, J. J. & Hansen, M. R. p75NTR and sortilin increase after facial nerve injury. Laryngoscope 118, 87–93 (2008).

    CAS  PubMed  Google Scholar 

  60. Jansen, P. et al. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nature Neurosci. 10, 1449–1457 (2007). Described the phenotype of the SORT1 -knockout mouse and provided genetic evidence for an in vivo function of the receptor in proNT-induced apoptosis.

    CAS  PubMed  Google Scholar 

  61. Wei, Y. et al. Enhanced protein expressions of sortilin and p75NTR in retina of rat following elevated intraocular pressure-induced retinal ischemia. Neurosci. Lett. 429, 169–174 (2007).

    CAS  PubMed  Google Scholar 

  62. Al-Shawi, R. et al. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur. J. Neurosci. 27, 2103–2114 (2008).

    PubMed  Google Scholar 

  63. Nakamura, K., Namekata, K., Harada, C. & Harada, T. Intracellular sortilin expression pattern regulates proNGF-induced naturally occurring cell death during development. Cell Death Differ. 14, 1552–1554 (2007).

    CAS  PubMed  Google Scholar 

  64. Arnett, M. G., Ryals, J. M. & Wright, D. E. Pro-NGF, sortilin, and p75NTR: potential mediators of injury-induced apoptosis in the mouse dorsal root ganglion. Brain Res. 1183, 32–42 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bronfman, F. C., Tcherpakov, M., Jovin, T. M. & Fainzilber, M. Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome. J. Neurosci. 23, 3209–3220 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bronfman, F. C. Metalloproteases and γ-secretase: new membrane partners regulating p75 neurotrophin receptor signaling? J. Neurochem. 103 (Suppl. 1), 91–100 (2007).

    CAS  PubMed  Google Scholar 

  67. Srinivasan, B. et al. Photic injury promotes cleavage of p75NTR by TACE and nuclear trafficking of the p75 intracellular domain. Mol. Cell. Neurosci. 36, 449–461 (2007).

    CAS  PubMed  Google Scholar 

  68. Podlesniy, P. et al. Pro-NGF from Alzheimer's disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. Am. J. Pathol. 169, 119–131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Deinhardt, K., Reversi, A., Berninghausen, O., Hopkins, C. R. & Schiavo, G. Neurotrophins redirect p75NTR from a clathrin-independent to a clathrin-dependent endocytic pathway coupled to axonal transport. Traffic 8, 1736–1749 (2007).

    CAS  PubMed  Google Scholar 

  70. Wang, H. et al. Axonal transport of BDNF precursor in primary sensory neurons. Eur. J. Neurosci. 24, 2444–2452 (2006).

    PubMed  Google Scholar 

  71. Deinhardt, K. et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52, 293–305 (2006).

    CAS  PubMed  Google Scholar 

  72. Gargano, N., Levi, A. & Alema, S. Modulation of nerve growth factor internalization by direct interaction between p75 and TrkA receptors. J. Neurosci. Res. 50, 1–12 (1997).

    CAS  PubMed  Google Scholar 

  73. Martin, S., Vincent, J. P. & Mazella, J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J. Neurosci. 23, 1198–1205 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Truzzi, F. et al. Neurotrophins and their receptors stimulate melanoma cell proliferation and migration. J. Invest. Dermatol. 128, 2031–2040 (2008).

    CAS  PubMed  Google Scholar 

  75. Buttigieg, H., Kawaja, M. D. & Fahnestock, M. Neurotrophic activity of proNGF in vivo. Exp. Neurol. 204, 832–835 (2007).

    CAS  PubMed  Google Scholar 

  76. Boutilier, J. et al. Proneurotrophins require endocytosis and intracellular proteolysis to induce TrkA activation. J. Biol. Chem. 283, 12709–12716 (2008). This study demonstrated that the survival-promoting activities of proNTs require conversion into mature NTs in an endosomal compartment.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hebert, E. Mannose-6-phosphate/insulin-like growth factor II receptor expression and tumor development. Biosci. Rep. 26, 7–17 (2006).

    CAS  PubMed  Google Scholar 

  78. Chen, Z. Y. et al. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J. Neurosci. 25, 6156–6166 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Trommsdorff, M., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33556–33560 (1998).

    CAS  PubMed  Google Scholar 

  80. Martinowich, K., Manji, H. & Lu, B. New insights into BDNF function in depression and anxiety. Nature Neurosci. 10, 1089–1093 (2007).

    CAS  PubMed  Google Scholar 

  81. Chen, Z. Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Scherzer, C. R. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 61, 1200–1205 (2004).

    PubMed  Google Scholar 

  83. Dodson, S. E. et al. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 866–872 (2006).

    CAS  PubMed  Google Scholar 

  84. Lee, J. H. et al. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch. Neurol. 64, 501–506 (2007).

    PubMed  PubMed Central  Google Scholar 

  85. King, G. D. & Scott Turner, R. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp. Neurol. 185, 208–219 (2004).

    CAS  PubMed  Google Scholar 

  86. Koo, E. H. The β-amyloid precursor protein (APP) and Alzheimer's disease: does the tail wag the dog? Traffic 3, 763–770 (2002).

    CAS  PubMed  Google Scholar 

  87. Reinhard, C., Hebert, S. S. & De Strooper, B. The amyloid-β precursor protein: integrating structure with biological function. EMBO J. 24, 3996–4006 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Andersen, O. M. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 102, 13461–13466 (2005). A demonstration of SORLA's role as the neuronal trafficking receptor for APP and a description of a defect in this receptor's gene in the mouse.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Offe, K. et al. The lipoprotein receptor LR11 regulates amyloidβ production and amyloid precursor protein traffic in endosomal compartments. J. Neurosci. 26, 1596–1603 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Andersen, O. M. et al. Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45, 2618–2628 (2006).

    CAS  PubMed  Google Scholar 

  91. Rohe, M. et al. Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis. J. Biol. Chem. 283, 14826–14834 (2008).

    CAS  PubMed  Google Scholar 

  92. Ma, Q. L. et al. Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention. J. Neurosci. 27, 14299–14307 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmidt, V. et al. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J. Biol. Chem. 282, 32956–32964 (2007).

    CAS  PubMed  Google Scholar 

  94. De Strooper, B. & Annaert, W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113, 1857–1870 (2000).

    CAS  PubMed  Google Scholar 

  95. Small, S. A. & Gandy, S. Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis. Neuron 52, 15–31 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Peraus, G. C., Masters, C. L. & Beyreuther, K. Late compartments of amyloid precursor protein transport in SY5Y cells are involved in β-amyloid secretion. J. Neurosci. 17, 7714–7724 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Khvotchev, M. & Sudhof, T. C. Proteolytic processing of amyloid-β precursor protein by secretases does not require cell surface transport. J. Biol. Chem. 279, 47101–47108 (2004).

    CAS  PubMed  Google Scholar 

  98. Nixon, R. A. & Cataldo, A. M. Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. J. Alzheimers Dis. 9, 277–289 (2006).

    CAS  PubMed  Google Scholar 

  99. von Arnim, C. A. et al. Demonstration of BACE (β-secretase) phosphorylation and its interaction with GGA1 in cells by fluorescence-lifetime imaging microscopy. J. Cell Sci. 117, 5437–5445 (2004).

    CAS  PubMed  Google Scholar 

  100. von Arnim, C. A. et al. GGA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J. Neurosci. 26, 9913–9922 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tesco, G. et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 54, 721–737 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wahle, T. et al. GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol. Cell. Neurosci. 29, 453–461 (2005).

    CAS  PubMed  Google Scholar 

  103. Small, S. A. Retromer sorting: a pathogenic pathway in late-onset Alzheimer disease. Arch. Neurol. 65, 323–328 (2008).

    PubMed  PubMed Central  Google Scholar 

  104. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    CAS  PubMed  Google Scholar 

  105. Small, S. A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann. Neurol. 58, 909–919 (2005).

    CAS  PubMed  Google Scholar 

  106. Muhammad, A. et al. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc. Natl Acad. Sci. USA 105, 7327–7332 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Beffert, U., Stolt, P. C. & Herz, J. Functions of lipoprotein receptors in neurons. J. Lipid Res. 45, 403–409 (2004).

    CAS  PubMed  Google Scholar 

  109. Pietrzik, C. U. et al. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J. Neurosci. 24, 4259–4265 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pietrzik, C. U., Busse, T., Merriam, D. E., Weggen, S. & Koo, E. H. The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J. 21, 5691–5700 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Munck Petersen, C. et al. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J. 18, 595–604 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Westergaard, U. B. et al. Functional organization of the sortilin Vps10p domain. J. Biol. Chem. 279, 50221–50229 (2004).

    CAS  PubMed  Google Scholar 

  113. Hermey, G., Sjogaard, S., Petersen, C. M., Nykjaer, A. & Gliemann, J. Tumour necrosis factor-α convertase mediates ectodomain shedding of Vps10p-domain receptor family members. Biochem. J. 395, 285–293 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Navarro, V., Vincent, J. P. & Mazella, J. Shedding of the luminal domain of the neurotensin receptor-3/sortilin in the HT29 cell line. Biochem. Biophys. Res. Commun. 298, 760–764 (2002).

    CAS  PubMed  Google Scholar 

  115. Hampe, W. et al. Ectodomain shedding, translocation and synthesis of SorLA are stimulated by its ligand head activator. J. Cell Sci. 113, 4475–4485 (2000).

    CAS  PubMed  Google Scholar 

  116. Nyborg, A. C., Ladd, T. B., Zwizinski, C. W., Lah, J. J. & Golde, T. E. Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel γ-secretase substrates. Mol. Neurodegener. 1, 3 (2006).

    PubMed  PubMed Central  Google Scholar 

  117. Hermey, G. et al. The three sorCS genes are differentially expressed and regulated by synaptic activity. J. Neurochem. 88, 1470–1476 (2004).

    CAS  PubMed  Google Scholar 

  118. Bergami, M. et al. Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J. Cell Biol. 183, 213−221 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to our colleagues for critical reading of the manuscript and to M. Andrade for help with computational analysis. Work from the authors' laboratories was supported by the Deutsche Forschungsgemeinschaft (DFG), the European Commission, the Alzheimer Forschungsinitiative e.V., the Danish Medical Research Council and the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas E. Willnow or Anders Nykjaer.

Related links

Related links

DATABASES

OMIM

AD

FURTHER INFORMATION

Thomas Willnow's homepage

Glossary

Adaptor protein

A protein that contributes to cellular function by recruiting other proteins to a complex. Such proteins often contain several protein–protein interaction domains.

Early endosome

A vesicle that contains molecules that have been internalized from the exterior of the cell through receptor-mediated endocytosis.

Retrograde sorting

Protein transport from axonal nerve endings back to the cell body (the opposite of anterograde sorting).

Secretory granule

A vesicle that stores molecules that are destined for controlled release from the cell into the medium.

Splice variant

An alternative form of a protein derived from alternative processing of its mRNA.

Amyloidogenic and non-amyloidogenic pathways

Cellular processes that promote (amyloidogenic) or interfere with (non-amyloidogenic) the deposition of plaques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willnow, T., Petersen, C. & Nykjaer, A. VPS10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci 9, 899–909 (2008). https://doi.org/10.1038/nrn2516

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing