Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathophysiological basis of dystonias

Key Points

  • Dystonia is a common and disabling movement disorder in humans. It encompasses a variety of different symptoms including torticollis, limb and trunk dystonia, writer's cramp, blepharospasm and spastic dysphonia.

  • Dystonia can arise in the absence of other apparent neurological disease (primary dystonia) or as a result of brain injury, drug treatment or neurodegenerative disease (secondary dystonia).

  • A large number of dystonias appear to have a strong genetic component. Fourteen monogenic forms of dystonia have been identified, most of which are autosomal dominant with incomplete penetrance. The proteins encoded are involved in a wide range of cellular functions including dopamine synthesis, organelle transport, neuronal development, membrane transport and toxin metabolism.

  • Both genotypic and phenotypic animal models of dystonia that provide insights into the pathophysiological basis of the disorder are available. These models can be used as platform for therapeutic testing.

  • Neuroimaging studies in humans and non-human primates have provided insight into the systems-level disturbances that are responsible for dystonia. These indicate a central role for abnormal plasticity, affecting the sensorimotor system, leading to distortion of sensory fields in the sensorimotor cortex and abnormal signalling in the basal ganglia.

  • Current treatment of the dystonias relies on drugs acting at dopaminergic, cholinergic and γ-aminobutyric acid (GABA)ergic receptors, but in most cases they are only partially effective. Some forms of dystonia respond remarkably well to deep brain stimulation of the globus pallidus, indicating that the movement abnormalities are potentially reversible.

Abstract

Dystonias comprise a group of movement disorders that are characterized by involuntary movements and postures. Insight into the nature of neuronal dysfunction has been provided by the identification of genes responsible for primary dystonias, the characterization of animal models and functional evaluations and in vivo brain imaging of patients with dystonia. The data suggest that alterations in neuronal development and communication within the brain create a susceptible substratum for dystonia. Although there is no overt neurodegeneration in most forms of dystonia, there are functional and microstructural brain alterations. Dystonia offers a window into the mechanisms whereby subtle changes in neuronal function, particularly in sensorimotor circuits that are associated with motor learning and memory, can corrupt normal coordination and lead to a disabling motor disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of patients with different forms of dystonia.
Figure 2: Changes in proteins that cause dystonia.
Figure 3: Brain circuitry affected in dystonia.
Figure 4: Functional and microstructural basal ganglia abnormalities in dystonia.
Figure 5: Modes of symptomatic therapy for dystonia.

Similar content being viewed by others

References

  1. Fahn, S. Concept and classification of dystonia. Adv. Neurol. 50, 1–8 (1988).

    CAS  PubMed  Google Scholar 

  2. Tarsy, D. & Simon, D. K. Dystonia. N. Engl. J. Med. 355, 818–829 (2006).

    CAS  PubMed  Google Scholar 

  3. Geyer, H. L. & Bressman, S. B. The diagnosis of dystonia. Lancet Neurol. 5, 780–790 (2006).

    PubMed  Google Scholar 

  4. Klein, C., Ozelius, L. J. & Breakefield, X. O. Genetic evaluation in primary dystonia, in Handbook of Dystonia (ed. Stacy, M.) 21–44 (Taylor & Francis Group, New York, 2007).

    Google Scholar 

  5. Risch, N., Bressman, S., Senthil, G. & Ozelius, L. Intragenic cis and trans modification of genetic susceptibility in DYT1 torsion dystonia. Am. J. Hum. Genet. 80, 1188–1193 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Edwards, M., Wood, N. & Bhatia, K. Unusual phenotypes in DYT1 dystonia: a report of five cases and a review of the literature. Mov. Disorder 18, 706–711 (2003).

    Google Scholar 

  7. Saint Hilaire, M. H., Burke, R. E., Bressman, S. B., Brin, M. F. & Fahn, S. Delayed-onset dystonia due to perinatal or early childhood asphyxia. Neurology 41, 216–222 (1991).

    CAS  PubMed  Google Scholar 

  8. Dobyns, W. B. et al. Rapid-onset dystonia-parkinsonism. Neurology 43, 2596–2602 (1993).

    CAS  PubMed  Google Scholar 

  9. Lee, H. Y. et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum. Mol. Genet. 13, 3161–3170 (2004).

    CAS  PubMed  Google Scholar 

  10. Augood, S. J. et al. Distribution of the mRNAs encoding torsinA and torsinB in the normal adult human brain. Ann. Neurol. 46, 761–769 (1999).

    CAS  PubMed  Google Scholar 

  11. Pisani, A., Bernardi, G., Ding, J. & Surmeier, D. J. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 30, 545–553 (2007). This review describes the emerging role of cholinergic interneurons in movement disorders, with reference to reference 73, which describes abnormal cholinergic responses to dopaminergic input in the striatum in a transgenic model of DYT1 dystonia.

    CAS  PubMed  Google Scholar 

  12. Goto, S. et al. Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism. Ann. Neurol. 58, 7–17 (2005).

    PubMed  Google Scholar 

  13. Wagner, M. L., Fedak, M. N., Sage, J. I. & Mark, M. H. Complications of disease and therapy: a comparison of younger and older patients with Parkinson's disease. Ann. Clin. Lab. Sci. 26, 389–395 (1996).

    CAS  PubMed  Google Scholar 

  14. Bressman, S. B. et al. The DYT1 phenotype and guidelines for diagnostic testing. Neurology 54, 1746–1752 (2000).

    CAS  PubMed  Google Scholar 

  15. Hedreen, J. C., Zweig, R. M., DeLong, M. R., Whitehouse, P. J. & Price, D. L. Primary dystonias: a review of the pathology and suggestions for new directions of study. Adv. Neurol. 50, 123–132 (1988).

    CAS  PubMed  Google Scholar 

  16. Rostasy, K. et al. TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiol. Dis. 12, 11–24 (2003).

    CAS  PubMed  Google Scholar 

  17. McNaught, K. S. et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann. Neurol. 56, 540–547 (2004).

    CAS  PubMed  Google Scholar 

  18. Ozelius, L. J. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nature Genet. 17, 40–48 (1997). This paper identified the gene and mutation responsible for most cases of early-onset torsion dystonia and described the protein responsible, torsinA, as an AAA+ protein.

    CAS  PubMed  Google Scholar 

  19. Xiao, J., Gong, S., Zhao, Y. & LeDoux, M. S. Developmental expression of rat torsinA transcript and protein. Brain Res. Dev. Brain Res. 152, 47–60 (2004).

    CAS  PubMed  Google Scholar 

  20. Vasudevan, A., Breakefield, X. O. & Bhide, P. Developmental patterns of torsinA and torsinB expression. Brain Res. 1073–1074, 139–145 (2006).

  21. Siegert, S. et al. TorsinA expression is detectable in human infants as young as 4 weeks old. Brain Res. Dev. Brain Res. 157, 19–26 (2005).

    CAS  PubMed  Google Scholar 

  22. Shashidharan, P., Kramer, B. C., Walker, R. H., Olanow, C. W. & Brin, M. F. Immunohistochemical localization and distribution of torsinA in normal human and rat brain. Brain Res. 853, 197–206 (2000).

    CAS  PubMed  Google Scholar 

  23. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genomic Res. 9, 27–43 (1999).

    CAS  Google Scholar 

  24. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    CAS  Google Scholar 

  25. Naismith, T. V., Heuser, J. E., Breakefield, X. O. & Hanson, P. I. TorsinA in the nuclear envelope. Proc. Natl Acad. Sci. USA 101, 7612–7617 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodchild, R. E., Kim, C. E. & Dauer, W. T. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron 48, 923–932 (2005). Together with reference 25, this paper established the involvement of torsinA in events in the nuclear envelope.

    CAS  PubMed  Google Scholar 

  27. Hewett, J. W., Tannous, B., Niland, B. P., Nery, F. C. & Breakefield, X. O. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc. Natl Acad. Sci. USA 104, 7271–7276 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao, S., Gelwix, C. C., Caldwell, K. A. & Caldwell, G. A. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J. Neurosci. 25, 3801–3812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Torres, G. E., Sweeney, A. L., Beaulieu, J. M., Shashidharan, P. & Caron, M. G. Effect of torsinA on membrane proteins reveals a loss of function and a dominant-negative phenotype of the dystonia-associated DeltaE-torsinA mutant. Proc. Natl Acad. Sci. USA 101, 15650–15655 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Goodchild, R. E. & Dauer, W. T. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168, 855–862 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kock, N. et al. Effects of genetic variations in the dystonia protein torsinA: identification of polymorphism at residue 216 as protein modifier. Hum. Mol. Genet. 15, 1355–1364 (2006).

    CAS  PubMed  Google Scholar 

  32. Pham, P., Frei, K. P., Woo, W. & Truong, D. D. Molecular defects of the dystonia-causing torsinA mutation. Neuroreport 17, 1725–1728 (2006).

    CAS  PubMed  Google Scholar 

  33. Konakova, M. & Pulst, S. M. Dystonia-associated forms of torsinA are deficient in ATPase activity. J. Mol. Neurosci. 25, 105–117 (2005).

    CAS  PubMed  Google Scholar 

  34. Lee, L. V., Munoz, E. L., Tan, K. T. & Reyes, M. T. Sex linked recessive dystonia parkinsonism of Panay, Philippines (XDP). Mol. Pathol. 54, 362–368 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Makino, S. et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am. J. Hum. Genet. 80, 393–406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nolte, D., Niemann, S. & Muller, U. Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proc. Natl Acad. Sci. USA 100, 10347–10352 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Segawa, M. Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev. 1, S65–80 (2000).

    Google Scholar 

  38. Ichinose, H. et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nature Genet. 8, 236–242 (1994). This landmark paper identified the defect in dopa-responsive dystonia and revealed the central role of altered dopamine biosynthesis in this syndrome.

    CAS  PubMed  Google Scholar 

  39. Maita, N., Hatakeyama, K., Okada, K. & Hakoshima, T. Structural basis of biopterin-induced inhibition of GTP cyclohydrolase I by GFRP, its feedback regulatory protein. J. Biol. Chem. 279, 51534–51540 (2004).

    CAS  PubMed  Google Scholar 

  40. Levine, R. A., Miller, L. P. & Lovenberg, W. Tetrahydrobiopterin in striatum: localization in dopamine nerve terminals and role in catecholamine synthesis. Science 214, 919–921 (1981).

    CAS  PubMed  Google Scholar 

  41. Ludecke, B., Dworniczak, B. & Bartholome, K. A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome. Hum. Genet. 95, 123–125 (1995).

    CAS  PubMed  Google Scholar 

  42. Knappskog, P. M., Flatmark, T., Mallet, J., Ludecke, B. & Bartholome, K. Recessively inherited L-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum. Mol. Genet. 4, 1209–1212 (1995).

    CAS  PubMed  Google Scholar 

  43. Swaans, R. J. et al. Four novel mutations in the tyrosine hydroxylase gene in patients with infantile parkinsonism. Ann. Hum. Genet. 64, 25–31 (2000).

    CAS  PubMed  Google Scholar 

  44. Royo, M., Daubner, S. C. & Fitzpatrick, P. F. Effects of mutations in tyrosine hydroxylase associated with progressive dystonia on the activity and stability of the protein. Proteins 58, 14–21 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Friedman, J. & Standaert, D. G. Neurogenetics of dystonia and paroxysmal dyskinesias, in Neurogenetics: Clinical and Scientific Advances (ed. Lynch, D. R.) 403–426 (Marcel Dekker, Inc., New York, 2005).

    Google Scholar 

  46. Rainier, S. et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch. Neurol. 61, 1025–1029 (2004).

    PubMed  Google Scholar 

  47. Saunders-Pullman, R., Ozelius, L. & Bressman, S. B. Inherited myoclonus-dystonia. Adv. Neurol. 89, 185–191 (2002a).

    PubMed  Google Scholar 

  48. Saunders-Pullman, R. et al. Myoclonus dystonia: possible association with obsessive-compulsive disorder and alcohol dependence. Neurology 58, 242–245 (2002b).

    CAS  PubMed  Google Scholar 

  49. Asmus, F. et al. Myoclonus-dystonia due to genomic deletions in the epsilon-sarcoglycan gene. Ann. Neurol. 58, 792–797 (2005).

    CAS  PubMed  Google Scholar 

  50. Piras, G. et al. Zac1 (Lot1), a potential tumor suppressor gene, and the gene for epsilon-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol. Cell Biol. 20, 3308–3315 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yokoi, F., Dang, M. T., Mitsui, S. & Li, Y. Exclusive paternal expression and novel alternatively spliced variants of epsilon-sarcoglycan mRNA in mouse brain. FEBS Lett. 579, 4822–4828 (2005).

    CAS  PubMed  Google Scholar 

  52. Muller, B. et al. Evidence that paternal expression of the epsilon-sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. Am. J. Hum. Genet. 71, 1303–1311 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zimprich, A. et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nature Genet. 29, 66–69 (2001). This study identified the gene responsible for DYT11 dystonia with supporting evidence for maternal inheritance and a potential insight into dystrophin–glycoprotein complexes in the brain.

    CAS  PubMed  Google Scholar 

  54. Esapa, C. T. et al. SGCE missense mutations that cause myoclonus-dystonia syndrome impair epsilon-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. Hum. Mol. Genet. 16, 327–342 (2007).

    CAS  PubMed  Google Scholar 

  55. Xiao, J. & LeDoux, M. S. Cloning, developmental regulation and neural localization of rat epsilon-sarcoglycan. Brain Res. Mol. Brain Res. 119, 132–143 (2003).

    CAS  PubMed  Google Scholar 

  56. Chan, P. et al. Epsilon-sarcoglycan immunoreactivity and mRNA expression in mouse brain. J. Comp. Neurol. 482, 50–73 (2005).

    CAS  PubMed  Google Scholar 

  57. Leung, J. C. et al. Novel mutation in the TOR1A (DYT1) gene in atypical early onset dystonia and polymorphisms in dystonia and early onset parkinsonism. Neurogenetics 3, 133–143 (2001).

    CAS  PubMed  Google Scholar 

  58. Klein, C. et al. Epsilon-sarcoglycan mutations found in combination with other dystonia gene mutations. Ann. Neurol. 52, 675–679 (2002).

    CAS  PubMed  Google Scholar 

  59. Brashear, A. et al. The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 130, 828–835 (2007).

    PubMed  Google Scholar 

  60. de Carvalho Aguiar, P. et al. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43, 169–175 (2004).

    PubMed  Google Scholar 

  61. Rodacker, V., Toustrup-Jensen, M. & Vilsen, B. Mutations Phe785Leu and Thr618Met in Na+, K+-ATPase, associated with familial rapid-onset dystonia parkinsonism, interfere with Na+ interaction by distinct mechanisms. J. Biol. Chem. 281, 18539–18548 (2006).

    CAS  PubMed  Google Scholar 

  62. Cannon, S. C. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu. Rev. Neurosci. 29, 387–415 (2006).

    CAS  PubMed  Google Scholar 

  63. Evinger, C. Animal models of focal dystonia. NeuroRx 2, 513–524 (2005).

    PubMed  PubMed Central  Google Scholar 

  64. Jinnah, H. A. et al. Animal models for drug discovery in dystonia. Expert Opin. Drug Disc. 3, 83–97 (2008).

    Google Scholar 

  65. Koh, Y. H., Rehfeld, K. & Ganetzky, B. A Drosophila model of early onset torsion dystonia suggests impairment in TGF-beta signaling. Hum. Mol. Genet. 13, 2019–2030 (2004).

    CAS  PubMed  Google Scholar 

  66. Muraro, N. I. & Moffat, K. G. Down-regulation of torp4a, encoding the Drosophila homologue of torsinA, results in increased neuronal degeneration. J. Neurobiol. 66, 1338–1353 (2006).

    CAS  PubMed  Google Scholar 

  67. Byl, N. N. Learning-based animal models: task-specific focal hand dystonia. ILAR J 48, 411–431 (2007). Summarizes an elegant series of experiments linking changes in sensory maps in the brain to the pathogenesis of focal dystonia, emphasizing the role of sensorimotor plasticity in dystonia.

    CAS  PubMed  Google Scholar 

  68. Sharma, N. et al. Impaired motor learning in mice expressing torsinA with the DYT1 dystonia mutation. J. Neurosci. 25, 5351–5355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shashidharan, P. et al. Transgenic mouse model of early-onset DYT1 dystonia. Hum. Mol. Genet. 14, 125–133 (2005).

    CAS  PubMed  Google Scholar 

  70. Grundmann, K. et al. Overexpression of human wildtype torsinA and human DeltaGAG torsinA in a transgenic mouse model causes phenotypic abnormalities. Neurobiol. Dis. 27, 190–206 (2007).

    CAS  PubMed  Google Scholar 

  71. Dang, M. T. et al. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia. Exp. Neurol. 196, 452–463 (2005). Together with references 26 and 76, this paper establishes that the DYT1-associated GAG deletion renders torsinA nonfunctional in the setting of a homozygous knock-in mouse.

    CAS  PubMed  Google Scholar 

  72. Balcioglu, A. et al. Dopamine release is impaired in a mouse model of DYT1 dystonia. J. Neurochem. 102, 783–788 (2007).

    CAS  PubMed  Google Scholar 

  73. Pisani, A. et al. Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol. Dis. 24, 318–325 (2006).

    CAS  PubMed  Google Scholar 

  74. Ghilardi, M. F. et al. Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann. Neurol. 54, 102–109 (2003).

    PubMed  Google Scholar 

  75. Yokoi, F., Dang, M. T., Mitsui, S., Li, J. & Li, Y. Motor deficits and hyperactivity in cerebral cortex-specific Dyt1 conditional knockout mice. J. Biochem. 143, 39–47 (2007).

    PubMed  Google Scholar 

  76. Dang, M. T., Yokoi, F., Pence, M. A. & Li, Y. Motor deficits and hyperactivity in Dyt1 knockdown mice. Neurosci. Res. 56, 470–474 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hyland, K., Gunasekara, R. S., Munk-Martin, T. L., Arnold, L. A. & Engle, T. The hph-1 mouse: a model for dominantly inherited GTP-cyclohydrolase deficiency. Ann. Neurol. 6, S46–48 (2003).

    Google Scholar 

  78. Yokoi, F., Dang, M. T., Li, J. & Li, Y. Myoclonus, motor deficits, alterations in emotional responses and monoamine metabolism in epsilon-sarcoglycan deficient mice. J. Biochem. (Tokyo) 140, 141–146 (2006). This mouse model of DYT11 dystonia most accurately reflects symptoms seen in patients with myoclonus dystonia, as compared to other rodent models of dystonia.

    CAS  Google Scholar 

  79. Moseley, A. E. et al. Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J. Neurosci. 27, 616–26 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genet. 10, 301–306 (1995).

    CAS  PubMed  Google Scholar 

  81. Liu, J. J. et al. Retrolinkin, a membrane protein, plays an important role in retrograde axonal transport. Proc. Natl Acad. Sci. USA 104, 2223–2228 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Young, K. G., Pinheiro, B. & Kothary, R. A Bpag1 isoform involved in cytoskeletal organization surrounding the nucleus. Exp. Cell Res. 312, 121–134 (2006).

    CAS  PubMed  Google Scholar 

  83. Berardelli, A. et al. The pathophysiology of primary dystonia. Brain 121, 1195–1212 (1998).

    PubMed  Google Scholar 

  84. Richter, A. The genetically dystonic hamster: an animal model of paroxysmal dystonia, in Animal Models of Movement Disorders (ed. LeDoux, M.) 459–466 (Elsevier Academic Press, San Diego, 2005).

    Google Scholar 

  85. Sander, S. E. & Richter, A. Effects of intrastriatal infections of glutamate receptor antagonists on the severity of paroxysmal dystonia in the dtsz mutant. Eur. J. Pharmacol. 563, 102–108 (2007).

    CAS  PubMed  Google Scholar 

  86. LeDoux, M. Animal Models Movement Disorders, 241–252 (Elsevier Academic Press, Burlington, Massachusetts, 2005).

    Google Scholar 

  87. Xiao, J., Gong, S. & LeDoux, M. S. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. Neuroscience 144, 439–461 (2007).

    CAS  PubMed  Google Scholar 

  88. Buschdorf, J. P. et al. Brain-specific BNIP-2-homology protein Caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels. J. Cell Sci. 119, 3337–3350 (2006).

    CAS  PubMed  Google Scholar 

  89. Defazio, G., Berardelli, A. & Hallett, M. Do primary adult-onset focal dystonias share aetiological factors? Brain 130, 1183–1193 (2007).

    PubMed  Google Scholar 

  90. Chase, T. N., Tamminga, C. A. & Burrows, H. Positron emission tomographic studies of regional cerebral glucose metabolism in idiopathic dystonia. Adv. Neurol. 50, 237–241 (1988).

    CAS  PubMed  Google Scholar 

  91. Perlmutter, J. S. et al. Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J. Neurosci. 17, 843–850 (1997). This study provided the first direct neural (as opposed to clinical) evidence that dopaminergic abnormalities might be involved in some human forms of dystonia.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Asanuma, K. et al. Decreased striatal D2 receptor binding in non-manifesting carriers of the DYT1 dystonia mutation. Neurology 64, 347–349 (2005).

    CAS  PubMed  Google Scholar 

  93. Rinne, J. O. et al. Striatal dopaminergic system in dopa-response dystonia: a multi-tracer PET study shows increased D2 receptors. J. Neural. Transm. 111, 59–67 (2004).

    CAS  PubMed  Google Scholar 

  94. Eidelberg, D. et al. Functional brain networks in DYT1 dystonia. Ann. Neurol. 44, 303–312 (1998). This fMRI study established dystonia as a network disorder and set the design and interpretation of future functional imaging studies, highlighting that dystonia patients, even at rest, do not have the same functional neural baseline as healthy controls. It provided a means to distinguish the brain regions involved in dystonic symptoms themselves (movement-related regions) from those which may underlie more fundamental endophenotypic traits of the disorder (movement-free regions).

    CAS  PubMed  Google Scholar 

  95. Ceballos-Baumann, A. O. et al. Overactive prefrontal and underactive motor cortical areas in idiopathic dystonia. Ann. Neurol. 37, 363–372 (1995).

    CAS  PubMed  Google Scholar 

  96. Ibanez, V., Sadato, N., Karp, B., Deiber, M. P. & Hallett, M. Deficient activation of the motor cortical network in patients with writer's cramp. Neurology 53, 96–105 (1999).

    CAS  PubMed  Google Scholar 

  97. Dresel, C., Haslinger, B., Castrop, F., Wohlschlaeger, A. M. & Ceballos-Baumann, A. O. Silent event-related fMRI reveals deficient motor and enhanced somatosensory activation in orofacial dystonia. Brain 129, 36–46 (2006).

    PubMed  Google Scholar 

  98. Blood, A. J. et al. Basal ganglia activity remains elevated after movement in focal hand dystonia. Ann. Neurol. 55, 744–748 (2004).

    PubMed  Google Scholar 

  99. Pujol, J. et al. Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. Neuroimage 12, 257–267 (2000).

    CAS  PubMed  Google Scholar 

  100. Ikoma, K., Samii, A., Mercuri, B., Wassermann, E. M. & Hallett, M. Abnormal cortical motor excitability in dystonia. Neurology 46, 1371–1376 (1996). This study was key to establishing the idea that abnormal excitability of motor-system neural function could be a physiological mechanism underlying dystonia.

    CAS  PubMed  Google Scholar 

  101. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    CAS  PubMed  Google Scholar 

  102. Carbon, M. et al. Microstructural white matter changes in carriers of the DYT1 gene mutation. Ann. Neurol. 56, 283–286 (2004).

    CAS  PubMed  Google Scholar 

  103. Colosimo, C. et al. Diffusion tensor imaging in primary cervical dystonia. J. Neurol. Neurosurg. Psychiatry 76, 1591–1593 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Blood, A. J. et al. White matter abnormalities in dystonia normalize after botulinum toxin treatment. Neuroreport 17, 1251–1255 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Draganski, B., Thun-Hohenstein, C., Bogdahn, U., Winkler, J. & May, A. “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology 61, 1228–1231 (2003).

    CAS  PubMed  Google Scholar 

  106. Garraux, G. et al. Changes in brain anatomy in focal hand dystonia. Ann. Neurol. 55, 736–739 (2004).

    PubMed  Google Scholar 

  107. Delmaire, C. et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology 69, 376–380 (2007).

    CAS  PubMed  Google Scholar 

  108. Etgen, T., Muhlau, M., Gaser, C. & Sander, D. Bilateral grey-matter increase in the putamen in primary blepharospasm. J. Neurol. Neurosurg. Psychiatry 77, 1017–1020 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Egger, K. et al. Voxel based morphometry reveals specific gray matter changes in primary dystonia. Mov. Disord. 22, 1538–1542 (2007).

    PubMed  Google Scholar 

  110. Hallett, M. Pathophysiology of dystonia. J. Neural. Transm. 70, S485–S488 (2006).

    Google Scholar 

  111. Quartarone, A., Siebner, H. R. & Rothwell, J. C. Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci. 29, 192–199 (2006). This article summarises recent results concerning abnormalities of plasticity in dystonia and explains how abnormal plasticity can give rise to dystonia. Although the discussion is most appropriate to focal hand dystonia, the ideas are generalizable to other forms of dystonia.

    CAS  PubMed  Google Scholar 

  112. Weise, D. et al. The two sides of associative plasticity in writer's cramp. Brain 129, 2709–2721 (2006).

    PubMed  Google Scholar 

  113. Bara-Jimenez, W., Catalan, M. J., Hallett, M. & Gerloff, C. Abnormal somatosensory homunculus in dystonia of the hand. Ann. Neurol. 44, 828–831 (1998).

    CAS  PubMed  Google Scholar 

  114. Byl, N. N., McKenzie, A. & Nagarajan, S. S. Differences in somatosensory hand organization in a healthy flutist and a flutist with focal hand dystonia: a case report. J. Hand Ther. 13, 302–309 (2000).

    CAS  PubMed  Google Scholar 

  115. Meunier, S. et al. Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization. Ann. Neurol. 50, 521–527 (2001).

    CAS  PubMed  Google Scholar 

  116. Thickbroom, G. W., Byrnes, M. L., Stell, R. & Mastaglia, F. L. Reversible reorganisation of the motor cortical representation of the hand in cervical dystonia. Mov. Disord. 18, 395–402 (2003).

    PubMed  Google Scholar 

  117. Fiorio, M., Tinazzi, M. & Aglioti, S. M. Selective impairment of hand mental rotation in patients with focal hand dystonia. Brain 129, 47–54 (2006).

    PubMed  Google Scholar 

  118. Sanger, T. D., Tarsy, D. & Pascual-Leone, A. Abnormalities of spatial and temporal sensory discrimination in writer's cramp. Mov. Disord. 16, 94–99 (2001).

    CAS  PubMed  Google Scholar 

  119. Rosenkranz, K., Altenmuller, E., Siggelkow, S. & Dengler, R. Alteration of sensorimotor integration in musician's cramp: impaired focusing of proprioception. Clin. Neurophysiol. 111, 2040–2045 (2000).

    CAS  PubMed  Google Scholar 

  120. Hallett, M. Dystonia: abnormal movements result from loss of inhibition. Adv. Neurol. 94, 1–9 (2004).

    PubMed  Google Scholar 

  121. Espay, A. J. et al. Cortical and spinal abnormalities in psychogenic dystonia. Ann. Neurol. 59, 825–834 (2006).

    PubMed  Google Scholar 

  122. Jankovic, J. Treatment of dystonia. Lancet Neurol. 5, 864–872 (2006).

    CAS  PubMed  Google Scholar 

  123. Curra, A., Trompetto, C., Abbruzzese, G. & Berardelli, A. Central effects of botulinum toxin type A: evidence and supposition. Mov. Disorder. 19, S60–64 (2004).

    Google Scholar 

  124. Tagliati, M., Shils, J., Sun, C. & Alterman, R. Deep brain stimulation for dystonia. Expert Rev. Med. Devices 1, 33–41 (2004).

    PubMed  Google Scholar 

  125. Vidailhet, M. et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol. 6, 223–229 (2007).

    PubMed  Google Scholar 

  126. Alterman, R. L. & Snyder, B. J. Deep brain stimulation for torsion dystonia. Acta Neurochir Suppl, 97, 191–199 (2007).

    CAS  Google Scholar 

  127. Zhang, J. G., Zhang, K., Wang, Z. C., Ge, M. & Ma, Y. Deep brain stimulation in the treatment of secondary dystonia. Chin. Med. J. (Eng) 119, 2069–2074 (2006).

    Google Scholar 

  128. Arnon, S. S. et al. Botulinum toxin as a biological weapon. JAMA 285, 1059–1070 (2001).

    CAS  PubMed  Google Scholar 

  129. Sharma, N. & Richman, E. Parkinson's Disease and the Family, A New Guide, (Harvard University Press Family Health Guides, USA, 2005).

    Google Scholar 

Download references

Acknowledgements

We thank S. McDavitt for skilled editorial assistance. Funding was provided by the Bachmann-Strauss Dystonia and Parkinson Foundation (X.O.B., Y.L. and D.G.S.), the Jack Fasciana Fund for Support of Dystonia Research (X.O.B.), the Dystonia Medical Research Foundation (A.B. and Y.L.), National Institute of Neurological Disorders and Stroke (NINDS) NS37409 (X.O.B. and D.G.S.), NS047692 (Y.L.), NS050717 (P.I.H.) and NINDS intramural funding (M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xandra O. Breakefield.

Related links

Related links

DATABASES

OMIM

DYT1

DYT3

DYT5

DYT8

DYT12

FURTHER INFORMATION

Xandra Breakefield's homepage

Glossary

Paroxysmal dystonia

Type of dystonia characterized by a sudden onset of symptoms of brief duration followed by remission.

Dyskinesia

Excessive and uncontrolled movements, which may be dystonic, repetitive or choreiform.

Chorea

Involuntary movements involving limbs, torso or facial muscles with a writhing, continuous character.

Monogenic

A hereditary disease caused by a defect in one or both alleles of a single gene.

Autosomal dominant

A disease in which a mutation in one of two alleles for a gene on an autosome (any chromosome other than the X and Y chromosomes) gives rise to the syndrome.

Reduced penetrance

Hereditary diseases in which only some carriers of the mutant gene are affected.

Homo-oligomeric complex

Protein complexes which are made up of multiple identical subunits.

Dominant-negative

A mutant form of a protein which itself lacks normal function but can suppress the functions of the wild-type gene product.

Founder mutation

A mutation that occurs in an isolated population, with in-breeding leading to an increased frequency in that population.

Ballistic movement

Involuntary or flinging projectile movements of the limbs, a violent form of chorea.

Maternal imprinting

The process by which the maternally inherited allele of a gene is silenced during embryogenesis so that only the paternal allele of that gene is expressed in the offspring.

Receptive field

The area of the brain that responds to sensory input.

Sequence learning

The process of learning motor skills in which a series of tasks must be executed in the proper sequence.

Haploinsufficiency

Partial deficiency of a protein, resulting from a loss-of-function mutation in one of the two alleles encoding the protein.

Endophenotype

A characteristic of an individual that is not immediately apparent, but which might be revealed by a biochemical or imaging test and used to classify the individual in a genetic study.

Paired associative stimulation

A transcranial magnetic stimulation (TMS) paradigm in which peripheral nerve stimulation is combined with TMS over the contralateral motor cortex, leading to an increase or a decrease in cortical excitability, depending on the interval between the two stimulations; the technique is meant to simulate long-term potentiation or depression in electrophysiological studies.

Somatotopy

The mapping of neuronal connections from body structures onto a physical representation of those structures in the cerebral cortex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breakefield, X., Blood, A., Li, Y. et al. The pathophysiological basis of dystonias. Nat Rev Neurosci 9, 222–234 (2008). https://doi.org/10.1038/nrn2337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing