Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effect of neurodegenerative diseases on the subventricular zone

Key Points

  • The subventricular zone (SVZ) maintains its ability to produce new neurons and glial cells throughout life.

  • In response to Huntington's disease, the number of proliferating progenitor cells in the SVZ increases approximately threefold and correlates with the advancing pathology in the striatum.

  • In the SVZ in Huntington's disease, the levels of mitogenic compounds such as neuropeptide Y and cannabinoid CB1 receptors are increased, indicating that SVZ cells are preserved despite the nearby pathology.

  • In Parkinson's disease, the nigrostriatal pathway degenerates and, as a result of lowered dopaminergic inputs to the type C cells, there is a reduction in progenitor cell proliferation in the SVZ. Experimentally this can be restored by administering dopaminergic agonists to the SVZ.

  • In the SVZ in Alzheimer's disease, the amyloid plaques appear to be toxic to the progenitor cells and, thus, progenitor cells cannot survive in the SVZ in the presence of this pathology. It is not clear whether the SVZ attempts to increase progenitor cell proliferation, but the net result is decreased SVZ proliferation due to b-amyloid toxicity.

  • The introduction of mitogenic factors to the SVZ progenitors leads to increased proliferation and migration towards sites of injury in the brain. The delivery of a combination of mitogenic factors or transcription factors to the SVZ by viral vectors may lead to improved progenitor cell replacement at the injury site.

Abstract

During brain development, one of the most important structures is the subventricular zone (SVZ), from which most neurons are generated. In adulthood the SVZ maintains a pool of progenitor cells that continuously replace neurons in the olfactory bulb. Neurodegenerative diseases induce a substantial upregulation or downregulation of SVZ progenitor cell proliferation, depending on the type of disorder. Far from being a dormant layer, the SVZ responds to neurodegenerative disease in a way that makes it a potential target for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representations of the subventricular zone (SVZ) in the normal brain and of the changes that occur in neurodegenerative disorders.
Figure 2: Representations of possible therapeutic interventions in the subventricular zone (SVZ) for neurodegenerative diseases.

Similar content being viewed by others

References

  1. Deacon, T. W., Pakzaban, P. & Isacson, O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 668, 211–219 (1994).

    PubMed  Google Scholar 

  2. Freeman, T. B., Sanberg, P. R. & Isacson, O. Development of the human striatum: implications for fetal striatal transplantation in the treatment of Huntington's disease. Cell Transplant. 4, 539–545 (1995).

    CAS  PubMed  Google Scholar 

  3. Ohtani, N., Goto, T., Waeber, C. & Bhide, P. G. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 23, 2840–2850 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Olsson, M., Bjorklund, A. & Campbell, K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience. 84, 867–876 (1998).

    CAS  PubMed  Google Scholar 

  5. Smart, I. H. A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J. Anat. 121, 71–84 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  7. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med. 8, 963–970 (2002). Shows the first experimental evidence that the SVZ can substantially upregulate the production of progenitor cells in response to stroke and that the progenitors migrate and develop into specific neuron types.

    CAS  PubMed  Google Scholar 

  8. Bedard, A., Levesque, M., Bernier, P. J. & Parent, A. The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur. J. Neurosci. 16, 1917–1924 (2002).

    PubMed  Google Scholar 

  9. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    CAS  PubMed  Google Scholar 

  10. Jin, K. et al. Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl Acad. Sci. USA 103, 13198–13202 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Parent, J. M., Valentin, V. V. & Lowenstein, D. H. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone–olfactory bulb pathway. J. Neurosci. 22, 3174–3188 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Parent, J. M., Vexler, Z. S., Gong, C., Derugin, N. & Ferriero, D. M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    PubMed  Google Scholar 

  13. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 (1998). The first demonstration of adult human neurogenesis.

    CAS  PubMed  Google Scholar 

  14. Haydar, T. F., Wang, F., Schwartz, M. L. & Rakic, P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci. 20, 5764–5774 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Privat, A. & Leblond, C. P. The subependymal layer and neighboring region in the brain of the young rat. J. Comp. Neurol. 146, 277–302 (1972).

    CAS  PubMed  Google Scholar 

  16. Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic figures. J. Anat. 113, 109–129 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Curtis, M. A., Waldvogel, H. J., Synek, B. & Faull, R. L. M. A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington's disease brain. J. Comp. Neurol. 30, 55–66 (2005)

    CAS  Google Scholar 

  18. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997). Detailed account of the anatomy and cellular composition of the rodent SVZ.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Quinones-Hinojosa, A. et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415–434 (2006).

    PubMed  Google Scholar 

  20. Bernier, P. J., Vinet, J., Cossette, M. & Parent, A. Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci. Res. 37, 67–78 (2000).

    CAS  PubMed  Google Scholar 

  21. Lois, C., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    CAS  PubMed  Google Scholar 

  22. Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  23. Imura, T., Kornblum, H. I. & Sofroniew, M. V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci. 23, 2824–2832 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gusella, J. F. et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–238 (1983).

    CAS  PubMed  Google Scholar 

  25. Snell, R. G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    CAS  PubMed  Google Scholar 

  26. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Google Scholar 

  27. Vonsattel, J. P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    CAS  PubMed  Google Scholar 

  28. van Dellen, A., Blakemore, C., Deacon, R., York, D. & Hannan, A. J. Delaying the onset of Huntington's in mice. Nature 404, 721–722 (2000).

    CAS  PubMed  Google Scholar 

  29. Sathasivam, K. et al. Transgenic models of Huntington's disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 963–969 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Slow, E. J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl Acad. Sci. USA 102, 11402–11407 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Phillips, W., Morton, A. J. & Barker, R. A. Abnormalities of neurogenesis in the R6/2 mouse model of Huntington's disease are attributable to the in vivo microenvironment. J. Neurosci. 25, 11564–11576 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tattersfield, A. S. et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 127, 319–332 (2004).

    CAS  PubMed  Google Scholar 

  33. Hockly, E. et al. Environmental enrichment slows disease progression in R6/2 Huntington's disease mice. Ann. Neurol. 51, 235–242 (2002).

    PubMed  Google Scholar 

  34. Lazic, S. E. et al. Decreased hippocampal cell proliferation in R6/1 Huntington's mice. Neuroreport 15, 811–813 (2004).

    PubMed  Google Scholar 

  35. Lazic, S. E. et al. Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. Eur. J. Neurosci. 23, 1829–1838 (2006).

    PubMed  Google Scholar 

  36. Batista, C. M. et al. A progressive and cell non-autonomous increase in striatal neural stem cells in the Huntington's disease R6/2 mouse. J. Neurosci. 26, 10452–10460 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chiasson, B. J., Tropepe, V., Morshead, C. M. & van der Kooy, D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188 (1999).

    CAS  PubMed  Google Scholar 

  39. Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003). The first demonstration of neurogenesis and progenitor cell proliferation in the human SVZ in response to neuropathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansel, D. E., Eipper, B. A. & Ronnett, G. V. Neuropeptide Y functions as a neuroproliferative factor. Nature 410, 940–944 (2001). Shows the extremely potent effect of factors such as NPY on progenitor proliferation in the brain.

    CAS  PubMed  Google Scholar 

  41. Chen, J. et al. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J. Neurosci. 25, 2366–2375 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Reif, A. et al. Differential effect of endothelial nitric oxide synthase (NOS-III) on the regulation of adult neurogenesis and behaviour. Eur. J. Neurosci. 20, 885–895 (2004).

    PubMed  Google Scholar 

  43. Saxena, N. C. & Macdonald, R. L. Assembly of GABAA receptor subunits: role of the δ subunit. J. Neurosci. 14, 7077–7086 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    CAS  PubMed  Google Scholar 

  45. Curtis, M. A., Faull, R. L. & Glass, M. A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntington's disease human brain. J. Chem. Neuroanat. 31, 210–215 (2006).

    CAS  PubMed  Google Scholar 

  46. MartÌn-Aparicio, E., Avila, J. & Lucas, J. J. Nuclear localization of N-terminal mutant huntingtin is cell cycle dependent. Eur. J. Neurosci. 16, 355–359 (2002).

    PubMed  Google Scholar 

  47. Yoshizawa, T. et al. Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado–Joseph disease gene product with an expanded polyglutamine stretch. Hum. Mol. Genet. 9, 69–78 (2000).

    CAS  PubMed  Google Scholar 

  48. Lledo, P. M., Alonso, M. & Grubb, M. S. Adult neurogenesis and functional plasticity in neuronal circuits. Nature Rev. Neurosci. 7, 179–193 (2006).

    CAS  Google Scholar 

  49. Höglinger, G. U. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neurosci. 7, 726–735 (2004). Demonstrates how dopaminergic inputs to the SVZ enhance progenitor cell proliferation. Conversely, dopaminergic denervation causes a reduction in progenitor cell proliferation in PD.

    PubMed  Google Scholar 

  50. Winner, B. et al. Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp. Neurol. 197, 113–121 (2006).

    CAS  PubMed  Google Scholar 

  51. Huisman, E., Uylings, H. B. & Hoogland, P. V. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson's disease. Mov. Disord. 19, 687–692 (2004).

    PubMed  Google Scholar 

  52. Baker, S. A., Baker, K. A. & Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci. 20, 575–579 (2004).

    PubMed  Google Scholar 

  53. Diaz, J. et al. Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J. Neurosci. 20, 8677–8684 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baker, S. A., Baker, K. A. & Hagg, T. D3 dopamine receptors do not regulate neurogenesis in the subventricular zone of adult mice. Neurobiol. Dis. 18, 523–527 (2005).

    CAS  PubMed  Google Scholar 

  55. Fallon, J. et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl Acad. Sci. USA 97, 14686–14691 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper, O. & Isacson, O. Intrastriatal transforming growth factor α delivery to a model of Parkinson's disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J. Neurosci. 24, 8924–8931 (2004). Demonstrates how a mitogenic factor can cause remarkable proliferation and migration of progenitor cells bilaterally despite a unilateral administration.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 4913–4917 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129 (2000).

    CAS  Google Scholar 

  59. Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Denovan-Wright, E. M. & Robertson, H. A. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington's disease mice. Neuroscience 98, 705–713 (2000).

    CAS  PubMed  Google Scholar 

  61. Jin, K. et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 343–347 (2004).

    CAS  PubMed  Google Scholar 

  62. Boekhoorn, K., Joels, M. & Lucassen, P. J. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol. Dis. 24, 1–14 (2006).

    CAS  PubMed  Google Scholar 

  63. Donovan, M. H. et al. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J. Comp. Neurol. 495, 70–83 (2006).

    PubMed  Google Scholar 

  64. Haughey, N. J., Liu, D., Nath, A., Borchard, A. C. & Mattson, M. P. Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid-β peptide: implications for the pathogenesis of Alzheimer's disease. Neuromolecular Med. 1, 125–135 (2002). Shows how the amyloid-β peptide is toxic to the progenitor cells in the SVZ.

    CAS  PubMed  Google Scholar 

  65. Haughey, N. J. et al. Disruption of neurogenesis by amyloid-β peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J. Neurochem. 83, 1509–1524 (2002).

    CAS  PubMed  Google Scholar 

  66. Wang, R., Dineley, K. T., Sweatt, J. D. & Zheng, H. Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126, 305–312 (2004).

    CAS  PubMed  Google Scholar 

  67. Wen, P. H. et al. The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp. Neurol. 188, 224–237 (2004).

    CAS  PubMed  Google Scholar 

  68. Devanand, D. P. et al. Olfactory deficits in patients with mild cognitive impairment predict Alzheimer's disease at follow-up. Am. J. Psychiatry 157, 1399–1405 (2000).

    CAS  PubMed  Google Scholar 

  69. Murphy, C., Gilmore, M. M., Seery, C. S., Salmon, D. P. & Lasker, B. R. Olfactory thresholds are associated with degree of dementia in Alzheimer's disease. Neurobiol. Aging 11, 465–469 (1990).

    CAS  PubMed  Google Scholar 

  70. Nordin, S., Almkvist, O., Berglund, B. & Wahlund, L. O. Olfactory dysfunction for pyridine and dementia progression in Alzheimer disease. Arch. Neurol. 54, 993–998 (1997).

    CAS  PubMed  Google Scholar 

  71. Serby, M., Larson, P. & Kalkstein, D. The nature and course of olfactory deficits in Alzheimer's disease. Am. J. Psychiatry 148, 357–360 (1991).

    CAS  PubMed  Google Scholar 

  72. Ziabreva, I. et al. Altered neurogenesis in Alzheimer's disease. J. Psychosom. Res. 61, 311–316 (2006).

    PubMed  Google Scholar 

  73. Yasuoka, K., Hirata, K., Kuraoka, A., He, J. W. & Kawabuchi, M. Expression of amyloid precursor protein-like molecule in astroglial cells of the subventricular zone and rostral migratory stream of the adult rat forebrain. J. Anat. 205, 135–146 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hayashi, Y. et al. Alzheimer amyloid protein precursor enhances proliferation of neural stem cells from fetal rat brain. Biochem. Biophys. Res. Commun. 205, 936–943 (1994).

    CAS  PubMed  Google Scholar 

  75. Ohsawa, I., Takamura, C., Morimoto, T., Ishiguro, M. & Kohsaka, S. Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. Eur. J. Neurosci. 11, 1907–1913 (1999).

    CAS  PubMed  Google Scholar 

  76. Caillé, I. et al. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131, 2173–2181 (2004).

    PubMed  Google Scholar 

  77. Yang, P., Baker, K. A. & Hagg, T. A disintegrin and metalloprotease 21 (ADAM21) is associated with neurogenesis and axonal growth in developing and adult rodent CNS. J. Comp. Neurol. 490, 163–179 (2005).

    CAS  PubMed  Google Scholar 

  78. Becker, M., Lavie, V. & Solomon, B. Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 104, 1691–1696 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    CAS  PubMed  Google Scholar 

  80. Komitova, M., Mattsson, B., Johansson, B. B. & Eriksson, P. S. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36, 1278–1282 (2005). Shows that altering the living environment of the mammal has a neurogenic effect on its neurological outcome after a middle-cerebral-artery-occlusion-induced stroke.

    PubMed  Google Scholar 

  81. Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O. & Eriksson, P. S. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578 (1999).

    CAS  PubMed  Google Scholar 

  82. Lazarov, O. et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120, 701–713 (2005).

    CAS  PubMed  Google Scholar 

  83. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fallon, J. H. et al. Epidermal growth factor immunoreactive material in the central nervous system: location and development. Science 224, 1107–1109 (1984).

    CAS  PubMed  Google Scholar 

  85. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vescovi, A. L., Reynolds, B. A., Fraser, D. D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966 (1993).

    CAS  PubMed  Google Scholar 

  88. Zigova, T., Pencea, V., Wiegand, S. J. & Luskin, M. B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci. 11, 234–245 (1998).

    CAS  PubMed  Google Scholar 

  89. Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D. & Goldman, S. A. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718–6731 (2001). Shows how a viral vector method of mitogen delivery can cause recruitment of progenitor cells to an injury site in the brain. BDNF affected multiple brain regions when it was administered by an adenovirus.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Duman, R. S., Nakagawa, S. & Malberg, J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25, 836–844 (2001).

    CAS  PubMed  Google Scholar 

  91. Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, G., Rajkowska, G., Du, F., Seraji-Bozorgzad, N. & Manji, H. K. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 75, 1729–1734 (2000).

    CAS  PubMed  Google Scholar 

  93. Senatorov, V. V., Ren, M., Kanai, H., Wei, H. & Chuang, D. M. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease. Mol. Psychiatry 9, 371–385 (2004).

    CAS  PubMed  Google Scholar 

  94. Manji, H. K., Moore, G. J. & Chen, G. Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol. Psychol. 48, 740–754 (2000). Shows how antidepressant drugs are involved in essential progenitor cell proliferation, maturation and neurite outgrowth.

    CAS  Google Scholar 

  95. Manji, H. K., Moore, G. J. & Chen, G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychol. 46, 929–940 (1999).

    CAS  Google Scholar 

  96. Malberg, J. E. & Duman, R. S. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28, 1562–1571 (2003).

    CAS  PubMed  Google Scholar 

  97. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    CAS  PubMed  Google Scholar 

  98. Flax, J. D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotechnol. 16, 1033–1039 (1998).

    CAS  Google Scholar 

  99. Herrera, D. G., García-Verdugo, J. M. & Alvarez-Buylla, A. Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46, 867–877 (1999).

    CAS  PubMed  Google Scholar 

  100. Vazey, E. M., Chen, K., Hughes, S. M. & Connor, B. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Exp. Neurol. 199, 384–396 (2006).

    PubMed  Google Scholar 

  101. Nakao, N., Ogura, M., Nakai, K. & Itakura, T. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntingtons disease. Neuroscience 88, 469–477 (1999).

    CAS  PubMed  Google Scholar 

  102. Visnyei, K. et al. Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp. Neurol. 197, 465–474 (2006).

    PubMed  Google Scholar 

  103. Shim, J. W. et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 25, 1252–1262 (2007).

    CAS  PubMed  Google Scholar 

  104. Dunnett, S. B. & Rosser, A. E. Stem cell transplantation for Huntington's disease. Exp. Neurol. 203, 279–292 (2007).

    CAS  PubMed  Google Scholar 

  105. Bjorklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E. & Iversen, S. D. Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333 (1980).

    CAS  PubMed  Google Scholar 

  106. Faull, R. L. M., Waldvogel, H. J., Nicholson, L. F. B., Williams, M. N. & Dragunow, M. in Neurotransmitters in the Human Brain (ed. Tracey, D. J.) 173–197 (Plenum, New York, 1995).

    Google Scholar 

  107. Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710–719 (2001).

    CAS  PubMed  Google Scholar 

  108. Kopyov, O. V., Jacques, D. S., Lieberman, A., Duma, C. M. & Rogers, R. L. Outcome following intrastriatal fetal mesencephalic grafts for Parkinson's patients is directly related to the volume of grafted tissue. Exp. Neurol. 146, 536–545 (1997).

    CAS  PubMed  Google Scholar 

  109. Kopyov, O. V., Jacques, S., Lieberman, A., Duma, C. M. & Eagle, K. S. Safety of intrastriatal neurotransplantation for Huntington's disease patients. Exp. Neurol. 149, 97–108 (1998).

    CAS  PubMed  Google Scholar 

  110. Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nature Neurosci. 6, 1162–1168 (2003).

    CAS  PubMed  Google Scholar 

  111. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    CAS  PubMed  Google Scholar 

  112. Baer, K., Eriksson, P. S., Faull, R. L., Rees, M. I. & Curtis, M. A. Sox-2 is expressed by glial and progenitor cells and Pax-6 is expressed by neuroblasts in the human subventricular zone. Exp. Neurol. 204, 828–831 (2007).

    CAS  PubMed  Google Scholar 

  113. Hack, M. A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neurosci. 8, 865–872 (2005).

    CAS  PubMed  Google Scholar 

  114. Kohwi, M., Osumi, N., Rubenstein, J. L. & Alvarez-Buylla, A. Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J. Neurosci. 25, 6997–7003 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Reimold, A. M. et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379, 262–265 (1996).

    CAS  PubMed  Google Scholar 

  116. Pearson, J., Curtis, M. A., Waldvogel, H. J., Faull, R. L. M. & Dragunow, M. Activating transcription factor 2 expression in the adult human brain: association with both neurodegeneration and neurogenesis. Neuroscience 133, 437–451 (2005).

    CAS  PubMed  Google Scholar 

  117. Matsuoka, N. et al. Adenovirus-mediated gene transfer of fibroblast growth factor-2 increases BrdU-positive cells after forebrain ischemia in gerbils. Stroke 34, 1519–1525 (2003).

    CAS  PubMed  Google Scholar 

  118. Vicario, I. & Schimmang, T. Transfer of FGF-2 via HSV-1-based amplicon vectors promotes efficient formation of neurons from embryonic stem cells. J. Neurosci. Methods 123, 55–60 (2003).

    CAS  PubMed  Google Scholar 

  119. Dolcetta, D. et al. Design and optimization of lentiviral vectors for transfer of GALC expression in Twitcher brain. J. Gene Med. 8, 962–971 (2006).

    CAS  PubMed  Google Scholar 

  120. Geraerts, M. et al. Lentiviral vectors mediate efficient and stable gene transfer in adult neural stem cells in vivo. Hum. Gene Ther. 17, 635–650 (2006).

    CAS  PubMed  Google Scholar 

  121. Sugiura, S. et al. Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke 36, 859–864 (2005).

    CAS  PubMed  Google Scholar 

  122. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    CAS  PubMed  Google Scholar 

  124. Luskin, M. B. & Boone, M. S. Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem. Senses 19, 695–714 (1994).

    CAS  PubMed  Google Scholar 

  125. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    CAS  PubMed  Google Scholar 

  126. Curtis, M. A. et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–1249 (2007). Demonstrates the ongoing usefulness of the SVZ in the normal brain for producing new neurons for cell replacement in the olfactory bulb. Details the only long-distance progenitor migratory system in the adult human brain.

    CAS  PubMed  Google Scholar 

  127. Jankovski, A., Garcia, C., Soriano, E. & Sotelo, C. Proliferation, migration and differentiation of neuronal progenitor cells in the adult mouse subventricular zone surgically separated from its olfactory bulb. Eur. J. Neurosci. 10, 3853–3868 (1998).

    CAS  PubMed  Google Scholar 

  128. Kirschenbaum, B., Doetsch, F., Lois, C. & Alvarez-Buylla, A. Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J. Neurosci. 19, 2171–2180 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wiltrout, C., Lang, B., Yan, Y., Dempsey, R. J. & Vemuganti, R. Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem. Int. 50, 1028–1041 (2007).

    CAS  PubMed  Google Scholar 

  130. Leker, R. R. et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38, 153–161 (2007).

    PubMed  Google Scholar 

  131. Minger, S. L. et al. Endogenous neurogenesis in the human brain following cerebral infarction. Regen. Med. 2, 69–74 (2007).

    PubMed  Google Scholar 

  132. Dempsey, R. J. & Kalluri, H. S. Ischemia-induced neurogenesis: role of growth factors. Neurosurg. Clin. N. Am. 18, 183–190, xi (2007).

    PubMed  Google Scholar 

  133. Schabitz, W. R. et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38, 2165–2172 (2007).

    PubMed  Google Scholar 

  134. Schneider, A. et al. An extended window of opportunity for G-CSF treatment in cerebral ischemia. BMC Biol. 4, 36 (2006).

    PubMed  PubMed Central  Google Scholar 

  135. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965). One of the earliest studies on adult neurogenesis; important technique advances are displayed in which tritiated thymidine, together with histological techniques, reveal adult neurogenesis in the adult rodent brain.

    CAS  PubMed  Google Scholar 

  136. Aimone, J. B., Wiles, J. & Gage, F. H. Potential role for adult neurogenesis in the encoding of time in new memories. Nature Neurosci. 9, 723–727 (2006).

    CAS  PubMed  Google Scholar 

  137. Black, A. H., Nadel, L. & O'Keefe, J. Hippocampal function in avoidance learning and punishment. Psychol. Bull. 84, 1107–1129 (1977).

    CAS  PubMed  Google Scholar 

  138. Eichenbaum, H. Hippocampus: mapping or memory? Curr. Biol. 10, R785–R787 (2000).

    CAS  PubMed  Google Scholar 

  139. Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci. 3, 453–462 (2002).

    CAS  Google Scholar 

  140. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature. 415, 1030–1034 (2002).

    CAS  PubMed  Google Scholar 

  141. Houser, C. R. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 535, 195–204 (1990).

    CAS  PubMed  Google Scholar 

  142. Luskin, M. B., Zigova, T., Soteres, B. J. & Stewart, R. R. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol. Cell. Neurosci. 8, 351–366 (1997). Demonstration that the SVZ progenitors can be removed and encouraged to adopt a neuronal phenotype in culture.

    CAS  PubMed  Google Scholar 

  143. Parent, J. M., Elliott, R. C., Pleasure, S. J., Barbaro, N. M. & Lowenstein, D. H. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann. Neurol. 59, 81–91 (2006).

    PubMed  Google Scholar 

  144. Parent, J. M., Janumpalli, S., McNamara, J. O. & Lowenstein, D. H. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci. Lett. 247, 9–12 (1998).

    CAS  PubMed  Google Scholar 

  145. Parent, J. M., von dem Bussche, N. & Lowenstein, D. H. Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16, 321–328 (2006).

    CAS  PubMed  Google Scholar 

  146. Raedt, R. et al. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia 6 Jun 2007 (doi: 10.1111/j.1528–1167.2007.01146.x).

  147. Dashtipour, K., Tran, P. H., Okazaki, M. M., Nadler, J. V. & Ribak, C. E. Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer. Brain Res. 890, 261–271 (2001).

    CAS  PubMed  Google Scholar 

  148. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Scharfman, H. E., Sollas, A. L. & Goodman, J. H. Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience 111, 71–81 (2002).

    CAS  PubMed  Google Scholar 

  150. Bonde, S., Ekdahl, C. T. & Lindvall, O. Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. Eur. J. Neurosci. 23, 965–974 (2006).

    PubMed  Google Scholar 

  151. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996). Demonstration of the effect of inserting the human exon 1 of the huntingtin gene into rodent brains.

    CAS  PubMed  Google Scholar 

  152. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    CAS  PubMed  Google Scholar 

  153. Beal, M. F. et al. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321, 168–171 (1986).

    CAS  PubMed  Google Scholar 

  154. Beal, M. F., Kowall, N. W., Swartz, K. J., Ferrante, R. J. & Martin, J. B. Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions. Synapse 3, 38–47 (1989).

    CAS  PubMed  Google Scholar 

  155. Ferrante, R. J., Kowall, N. W., Cipolloni, P. B., Storey, E. & Beal, M. F. Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterisation. Exp. Neurol. 119, 46–71 (1993).

    CAS  PubMed  Google Scholar 

  156. Waldvogel, H. J., Faull, R. L. M., Williams, M. N. & Dragunow, M. Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins. Brain Res. 546, 329–335 (1991).

    CAS  PubMed  Google Scholar 

  157. Collin, T., Arvidsson, A., Kokaia, Z. & Lindvall, O. Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Exp. Neurol. 195, 71–80 (2005).

    PubMed  Google Scholar 

  158. Parent, J. M. Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9, 261–272 (2003). Review of stroke and epilepsy studies on proliferation in the germinal zones in rodent brains.

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Swedish Research Council, the Health Research Council of New Zealand and the Neurological Foundation of New Zealand. In particular, M.A.C. is supported as a Wrightson Postdoctoral Fellow. We thank J. Westin for his expertise in making the original illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice A. Curtis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Huntington's disease

Parkinson's disease

Glossary

Ganglionic eminence

An embryonic cluster of nerve cells near the ventricle, where neurons are generated before they migrate to different parts of the brain.

Progenitor cell

A dividing cell that has the capacity to differentiate.

Basal ganglion

A type of specialized nerve cell cluster that is found deep within each cerebral hemisphere and the upper brainstem. Basal ganglia consist of the caudate nucleus, the putamen, the globus pallidus, the sub-thalamic nucleus and the substantia nigra. The basal ganglia assist in initiating movement and in motor control.

Neuroblast

A dividing neuronal precursor cell.

Striatum

The area of the brain that controls movement and balance. It consists of the caudate nucleus and the putamen, and it is connected to and receives signals from the substantia nigra and the cortex.

Rota-rod performance

A motor test that determines the ability of rodents to keep their balance on a rotating cylinder.

Neurosphere culture

A free-floating multidimensional cell structure that is derived from neural stem cells in vitro. Neurosphere assays enable the investigation of the differentiation and proliferative potential of neural stem cells and progenitor cells.

Differentiation

The process whereby an unspecialized cell develops the specialized functions of a mature cell, for example, a neuron, or a liver or muscle cell.

Acute treatment

A remedial action that is administered within the first few hours of a neurodegenerative or necrotic event such as a stroke.

Sub-acute treatment

A remedial action that is administered after the initial neurodegenerative and/or necrotic events of a stroke are over.

Proliferating cell nuclear antigen

(PCNA). A cell-cycle protein that is expressed during, and shortly after, G1 and S-phase. It is used as a marker of recent cell division.

Substantia nigra pars compacta

(SNpc). The area of the brain where dopamine is produced. It is also one of the basal ganglia nuclei.

Levodopa

The most commonly used drug for the treatment of Parkinson's disease. After administration, it is converted into dopamine, such that it raises the levels of dopamine in the brain. Levodopa treatment is an effective control of Parkinson's disease symptoms, however, its long-term use is associated with complications.

Transit-amplifying cell

A type of proliferative stem cell that is able to divide only 3–5 times before all of its daughter cells terminally differentiate.

β-amyloid (Aβ) peptide

A peptide that is derived from amyloid precursor protein. These peptides are the main protein component of amyloid plaques.

Amyloid precursor protein

(APP). A membrane glycoprotein component of fast axonal transport that is cleaved by secretases to give rise to Aβ.

Neural stem cell

A stem cell that is found in adult neural tissue and can give rise to neurons and glial cells.

Radial glial cell

A connective tissue cell that guides the migration of neurons from the SVZ to the cortex. Radial glia are also a major source of cortical neurons during development.

Autologous transplant

A tissue transplant in which a patient's own progenitor cells are removed, expanded in culture and then transplanted back into the disease-affected region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, M., Faull, R. & Eriksson, P. The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci 8, 712–723 (2007). https://doi.org/10.1038/nrn2216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing