Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term synaptic plasticity in hippocampal interneurons

Key Points

  • Hippocampal interneurons express at least two forms of activity-dependent long-term potentiation (LTP) at glutamatergic synapses.

  • One form ('Hebbian' LTP) depends on N-methyl-D-aspartate (NMDA) receptors and has similar induction and expression mechanisms to the LTP that takes place in pyramidal cells.

  • However, different Ca2+–calmodulin-dependent kinases (acting downstream from NMDA receptors) from those that mediate LTP induction in pryamidal cells mediate LTP induction in interneurons.

  • The other form of LTP ('anti-Hebbian' LTP) depends on Ca2+-permeable AMPA receptors, but not NMDA receptors. The voltage-dependent conductance of these receptors allows Ca2+ flow during negative membrane potentials but not during depolarisation. Metabotropic glutamate receptors also contribute to the induction of NMDA receptor-independent LTP.

  • Neither form of LTP spreads to afferent pathways that were inactive during induction. Because interneurons do not have profuse dendritic spines, this observation argues against an obligatory role for spines in preventing the spread of LTP.

  • Both forms of LTP have their counterparts in two complementary forms of long-term depression (LTD).

  • NMDA receptor-dependent LTP and LTD appear to be expressed postsynaptically. NMDA receptor-independent LTP and LTD appear to be expressed presynaptically.

  • Different forms of plasticity occur at distinct synapses in the hippocampus and greatly expand the computational capacity of hippocampal networks.

Abstract

Rapid memory formation relies, at least in part, on long-term potentiation (LTP) of excitatory synapses. Inhibitory interneurons of the hippocampus, which are essential for information processing, have recently been found to exhibit not one, but two forms of LTP. One form resembles LTP that occurs in pyramidal neurons, which depends on N-methyl-D-aspartate receptors and is triggered by coincident pre- and postsynaptic activity. The other depends on Ca2+ influx through glutamate receptors that preferentially open when the postsynaptic neuron is at rest. Here we review these contrasting forms of LTP and describe how they are mirrored by two forms of long-term depression. We further discuss how the remarkable plasticity of glutamatergic synapses on interneurons greatly enhances the computational capacity of the cortical microcircuit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rectification of ionotropic glutamate receptors and Ca2+ influx at different types of glutamatergic synapse.
Figure 2: Long-term potentiation (LTP) and long-term depression (LTD) in the hippocampal formation.
Figure 3: Complementary forms of synaptic plasticity at different types of glutamatergic synapse.
Figure 4: The possible computational roles of long-term potentiation (LTP) in cortical interneurons.

Similar content being viewed by others

References

  1. McBain, C. J., Freund, T. F. & Mody, I. Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity. Trends Neurosci. 22, 228–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. 562, 9–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  5. Yuste, R. Origin and classification of neocortical interneurons. Neuron 48, 524–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed- forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. 543, 779–793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oren, I., Mann, E. O., Paulsen, O. & Hajos, N. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J. Neurosci. 26, 9923–9934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glickfeld, L. L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neurosci. 9, 807–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Geiger, J. R., Lubke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron–interneuron synapse. Neuron 18, 1009–1023 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Geiger, J. R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H. & Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Lambolez, B., Ropert, N., Perrais, D., Rossier, J. & Hestrin, S. Correlation between kinetics and RNA splicing of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc. Natl Acad. Sci. USA 93, 1797–1802 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Angulo, M. C., Lambolez, B., Audinat, E., Hestrin, S. & Rossier, J. Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J. Neurosci. 17, 6685–6696 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koh, D. S., Geiger, J. R., Jonas, P. & Sakmann, B. Ca2+-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J. Physiol. 485 (Pt 2), 383–402 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nature Neurosci. 3, 1098–1106 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Donevan, S. D. & Rogawski, M. A. Intracellular polyamines mediate inward rectification of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl Acad. Sci. USA 92, 9298–9302 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowie, D. & Mayer, M. L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Koh, D. S., Burnashev, N. & Jonas, P. Block of native Ca2+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. 486, 305–312 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Angulo, M. C., Rossier, J. & Audinat, E. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J. Neurophysiol. 82, 1295–1302 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lei, S. & McBain, C. J. Distinct NMDA receptors provide differential modes of transmission at mossy fiber–interneuron synapses. Neuron 33, 921–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lamsa, K. P., Heeroma, J. H., Somogyi, P., Rusakov, D. A. & Kullmann, D. M. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315, 1262–1266 (2007). This study uncovered a novel induction rule for LTP: co-incidence of presynaptic glutamate release with postsynaptic quiescence is needed. This is due to the rectification of Ca2+-permeable AMPA receptors, which are blocked at depolarized membrane potentials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laezza, F. & Dingledine, R. Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. J. Neurophysiol. 92, 3575–3581 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Nyiri, G., Stephenson, F. A., Freund, T. F. & Somogyi, P. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience 119, 347–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Maccaferri, G. & Dingledine, R. Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons. J. Neurosci. 22, 5462–5472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Catania, M. V., Tolle, T. R. & Monyer, H. Differential expression of AMPA receptor subunits in NOS-positive neurons of cortex, striatum, and hippocampus. J. Neurosci. 15, 7046–7061 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Catania, M. V. et al. AMPA receptor subunits are differentially expressed in parvalbumin- and calretinin-positive neurons of the rat hippocampus. Eur. J. Neurosci. 10, 3479–3490 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Toth, K. & McBain, C. J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nature Neurosci. 1, 572–578 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. van Hooft, J. A., Giuffrida, R., Blatow, M. & Monyer, H. Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons. J. Neurosci. 20, 3544–3551 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferraguti, F. et al. Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus 14, 193–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. McMahon, L. L. & Kauer, J. A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Alle, H., Jonas, P. & Geiger, J. R. PTP and LTP at a hippocampal mossy fiber–interneuron synapse. Proc. Natl Acad. Sci. USA 98, 14708–14713 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buzsaki, G. & Eidelberg, E. Direct afferent excitation and long-term potentiation of hippocampal interneurons. J. Neurophysiol. 48, 597–607 (1982). This in vivo study reported the first evidence for activity-induced long-term potentiation in inhibitory hippocampal interneurons.

    Article  CAS  PubMed  Google Scholar 

  36. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouardouz, M. & Lacaille, J. C. Mechanisms of selective long-term potentiation of excitatory synapses in stratum oriens–alveus interneurons of rat hippocampal slices. J. Neurophysiol. 73, 810–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Christie, B. R., Franks, K. M., Seamans, J. K., Saga, K. & Sejnowski, T. J. Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells. Hippocampus 10, 673–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Gulyas, A. I., Toth, K., McBain, C. J. & Freund, T. F. Stratum radiatum giant cells: a type of principal cell in the rat hippocampus. Eur. J. Neurosci. 10, 3813–3822 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Maccaferri, G. & McBain, C. J. Passive propagation of LTD to stratum oriens–alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. Neuron 15, 137–145 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Cowan, A. I., Stricker, C., Reece, L. J. & Redman, S. J. Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. J. Neurophysiol. 79, 13–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, J. H. & Kelly, P. Calcium–calmodulin signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal, fast spiking rat hippocampal CA1 neurons. J. Physiol. 533, 407–422 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maccaferri, G. & McBain, C. J. Long-term potentiation in distinct subtypes of hippocampal nonpyramidal neurons. J. Neurosci. 16, 5334–5343 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Isaac, J. T., Hjelmstad, G. O., Nicoll, R. A. & Malenka, R. C. Long-term potentiation at single fiber inputs to hippocampal CA1 pyramidal cells. Proc. Natl Acad. Sci. USA 93, 8710–8715 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lamsa, K., Heeroma, J. H. & Kullmann, D. M. Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nature Neurosci. 8, 916–924 (2005). This paper describes NMDA-receptor-dependent long-term potentiation in hippocampal interneurons, undermining the assumptions that these cells are incapable of expressing this form of plasticity and that spines are a prerequisite for pathway specificity.

    Article  CAS  PubMed  Google Scholar 

  46. Bauer, E. P. & LeDoux, J. E. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J. Neurosci. 24, 9507–9512 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuste, R., Majewska, A. & Holthoff, K. From form to function: calcium compartmentalization in dendritic spines. Nature Neurosci. 3, 653–659 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Nimchinsky, E. A., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg, J. H. & Yuste, R. Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons. Trends Neurosci. 28, 158–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  51. Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α calcium–calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Sik, A., Hajos, N., Gulacsi, A., Mody, I. & Freund, T. F. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc. Natl Acad. Sci. USA 95, 3245–3250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, X. B. & Jones, E. G. Localization of α type II calcium–calmodulin-dependent protein kinase at glutamatergic but not γ-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc. Natl Acad. Sci. USA 93, 7332–7336 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kullmann, D. M., Lamsa, K. Irwine, E. E. & Giese, K. P. Hebbian LTP in inhibitory hippocampal interneurons is independent of a CaMKII autophosphorylation. Abstr. Soc. Neurosci. 633.10/E46 (2006).

  55. Lledo, P. M. et al. Calcium–calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl Acad. Sci. USA 92, 11175–11179 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mahanty, N. K. & Sah, P. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683–687 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Perez, Y., Morin, F. & Lacaille, J. C. A Hebbian form of long-term potentiation dependent on mGluR1α in hippocampal inhibitory interneurons. Proc. Natl Acad. Sci. USA 98, 9401–9406 (2001). This study showed that long-term potentiation can be elicited in interneurons of the stratum oriens, where it requires mGluR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Mellor, J. & Nicoll, R. A. Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nature Neurosci. 4, 125–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Williams, S. & Johnston, D. Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators. Neuron 3, 583–588 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci. 2, 625–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Topolnik, L., Congar, P. & Lacaille, J. C. Differential regulation of metabotropic glutamate receptor- and AMPA receptor-mediated dendritic Ca2+ signals by presynaptic and postsynaptic activity in hippocampal interneurons. J. Neurosci. 25, 990–1001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lapointe, V. et al. Synapse-specific mGluR1-dependent long-term potentiation in interneurones regulates mouse hippocampal inhibition. J. Physiol. 555, 125–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Goldberg, J. H., Yuste, R. & Tamas, G. Ca2+ imaging of mouse neocortical interneurone dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+ dynamics. J. Physiol. 551, 67–78 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laezza, F., Doherty, J. J. & Dingledine, R. Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285, 1411–1414 (1999). First report to show that the induction of long-term depression requires both postsynaptic Ca2+, entering through Ca2+-permeable-AMPA receptors, and presynaptic mGluR7 activation.

    Article  CAS  PubMed  Google Scholar 

  66. Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368–1370 (1998). This paper showed that the same presynaptic activity pattern in mossy fibres can induce long-term depression at synapses on interneurons and long-term potentiation at synapses on pyramidal cells.

    Article  CAS  PubMed  Google Scholar 

  67. Pelkey, K. A., Topolnik, L., Lacaille, J. C. & McBain, C. J. Compartmentalized Ca2+ channel regulation at divergent mossy-fiber release sites underlies target cell-dependent plasticity. Neuron 52, 497–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Lei, S. & McBain, C. J. Two loci of expression for long-term depression at hippocampal mossy fiber–interneuron synapses. J. Neurosci. 24, 2112–2121 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Pelkey, K. A., Lavezzari, G., Racca, C., Roche, K. W. & McBain, C. J. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron 46, 89–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, S. Q. & Cull-Candy, S. G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  75. Willshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C. Non-holographic associative memory. Nature 222, 960–962 (1969).

    Article  CAS  PubMed  Google Scholar 

  76. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Aizenman, C. D., Munoz-Elias, G. & Cline, H. T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Takano, K., Ogura, M., Nakamura, Y. & Yoneda, Y. Neuronal and glial responses to polyamines in the ischemic brain. Curr. Neurovasc. Res. 2, 213–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Klausberger, T. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neurosci. 7, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Acsady, L., Gorcs, T. J. & Freund, T. F. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73, 317–334 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. O'Neill, J., Senior, T. & Csicsvari, J. Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49, 143–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dragoi, G., Harris, K. D. & Buzsaki, G. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39, 843–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Acsady, L., Kamondi, A., Sik, A., Freund, T. & Buzsaki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Gulyas, A. I., Hajos, N. & Freund, T. F. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J. Neurosci. 16, 3397–3411 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Blasco-Ibanez, J. M. & Freund, T. F. Synaptic input of horizontal interneurons in stratum oriens of the hippocampal CA1 subfield: structural basis of feed-back activation. Eur. J. Neurosci. 7, 2170–2180 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Price, C. J. et al. Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J. Neurosci. 25, 6775–6786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Santamaria, F., Wils, S., De Schutter, E. & Augustine, G. J. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nelson, S. B. Hebb and anti-Hebb meet in the brainstem. Nature Neurosci. 7, 687–688 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA 86, 9574–9578 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory that was relevant to this Review was supported by the Medical Research Council, the Wellcome Trust and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri M. Kullmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Dimitri M. Kullmann's homepage

Glossary

Long-term potentiation

(LTP). The activity-dependent strengthening of synaptic transmission (usually lasting longer than 30 minutes) that is widely thought to underlie certain forms of memory acquisition. LTP is commonly induced by brief, high-frequency (100 Hz) stimulation (tetanization) of presynaptic axons, or by pairing low-frequency (1–2 Hz) presynaptic stimulation with postsynaptic depolarization. LTP at some glutamatergic synapses on interneurons obeys different induction rules.

NMDA receptor

A type of ionotropic glutamate receptor that is characterized by its slow kinetics and strong permeability to calcium. Its name derives from the potent and specific agonist N-methyl-D-aspartate.

Long-term depression

The counterpart of LTP. It is defined as an activity-dependent weakening of synaptic strength.

Inhibitory interneuron

A GABA-releasing neuron in the brain that projects mainly to local target neurons.

Principal cell

A type of neuron that usually releases glutamate and that integrates multiple synaptic inputs and sends the resultant information out through axons that project to relatively remote structures. Principal cells account for 80–90% of neurons in the cortex.

Fast-spiking axo-axonic cell

An interneuron that forms characteristic 'cartridge' synapses on the initial segments of axons. They are also known as 'chandelier' cells.

Neurogliaform cell

An interneuron that forms a dense axonal and dendritic plexus. Its shape is reminiscent of that of astrocytic glial cells.

O-LM cell

An inteneuron that has its soma and dendrites in the stratum oriens, and that projects to the stratum lacunosum-moleculare.

Basket cell

An interneuron that innervates the perisomatic region of target neurons. The axonal arborization of basket cells often resembles a basket surrounding the target cell body.

Feedback–feedforward dichotomy

The idea that interneurons mediate either feedback or feedforward inhibition, depending on whether they are innervated by the axons of remote principal cells or by the recurrent collaterals of local principal cells, respectively.

Acute brain slice

An experimental preparation that consists of freshly isolated slabs of brain tissue maintained in a chamber that is supplied with oxygenated artificial cerebrospinal fluid. It allows synaptic and neuronal properties to be studied with electrophysiological, optical, pharmacological and biochemical methods.

Latency jitter

Information transmission in the brain can be degraded in several ways – latency jitter describes trial-to-trial variability in the initiation of a synaptic signal or action potential.

Theta band

The frequency range of the power spectrum of an electro-encephalograph that ranges from approximately 4Hz to 8 Hz.

Theta oscillation

A type of brain activity that is characterized by prominent theta-band neuronal and synaptic activity. It typically occurs during exploratory activity in freely moving rodents.

Gamma band

The 30–70 Hz range of the electroencephalograph power spectrum. It is associated with high-level information processing.

Sharp-wave ripple

A brief (approximately 100 ms) episode of high-frequency (>100 Hz) population activity.

AMPA receptor

An ionotropic glutamate receptor that is characterized by fast kinetics. Its name is derived from the potent and specific agonist α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid. AMPA receptors can be differentiated into Ca2+-permeable and Ca2+-impermeable subtypes.

Post-transcriptional editing

The processing that some mRNA transcripts (including those that encode some of the AMPA and kainate receptor subunits) undergo before splicing and translation. One form of post-transcriptional editing results in the substitution of an arginine (R) codon for a glutamine (Q) codon: a change that affects several biophysical properties.

Rectifying AMPA receptor

An AMPA receptor that has a conductance that decreases with depolarization, and thus deviates from Ohm's law.

Non-rectifying AMPA receptor

An AMPA receptor that contains an edited GluR2 subunit and has a voltage-independent conductance.

Mossy fibres

The axons of dentate granule cells. They project to the hilus of the dentate gyrus and to the CA3 region of the hippocampus proper. These axons have several unusual properties, including abundant presynaptic expression of the metabotropic glutamate receptor mGluR7, and the occurrence of giant boutons that synapse on CA3 pyramidal neurons. Mossy fibres also synapse with interneurons in the hippocampus.

Metabotropic glutamate receptors

A family of eight G-protein-coupled glutamate receptors that have a characteristic seven-transmembrane segment topology. They are grouped into three classes (I–III) depending on their pharmacological properties and their downstream metabolic cascades.

Tetanic stimulation

The high-frequency activation of axons evokes a postsynaptic signal in which the responses to individual presynaptic action potentials merge together (a tetanus) – such stimulation is said to be tetanic.

Whole-cell patch-clamp recording

A variation of the patch-clamp method whereby the membrane under the mouth of a pipette that has been applied to a neuron is ruptured, providing excellent electrical access to the neuron. The drawback of this technique is that cytoplasmic integrity is compromised.

Protracted recording period

When a whole-cell patch-clamp recording lasts longer than approximately 20 minutes, precluding LTP induction in pyramidal cells. In aspiny interneurons, the viable recording period before LTP induction is much shorter.

Perforated patch method

A variant of the cell-attached patch-clamp method in which the membrane under the mouth of the pipette is not ruptured, but instead an antibiotic (typically gramicidin, nystatin or amphotericin B) is included in the pipette solution to form ion-conducting pores. This allows good electrical access to the cell without compromising cytoplasmic integrity.

Aspiny dendrites

Dendrites that are devoid of spines or equipped with only sparse spines. Cortical inhibitory interneurons typically have aspiny dendrites.

Transient receptor potential channels

A family of ion channels that are related to voltage-gated potassium channels. Many are permeable to multiple cations and are opened in response to intracellular messengers.

Paired-pulse ratio

A measure of short-term, use-dependent synaptic plasticity that is obtained by dividing the response to the second of two stimuli by the response to the first stimulus. A presynaptic alteration in release probability is almost universally accompanied by a change in paired-pulse ratio.

Failure rate

The rate at which a synapse fails to release any neurotransmitter and hence to generate any postsynaptic response (action-potential-dependent neurotransmitter release is probabilistic). The failure rate gives an indirect indication of the state of the presynaptic release machinery.

Coefficient of variation of EPSCs

The standard deviation of action-potential-dependent EPSCs divided by their mean amplitude. This measure is used to describe the EPSCs' trial-to-trial amplitude fluctuation. An increase in transmitter release probability is typically associated with a decrease in the coefficient of variation.

Hebbian LTP

A type of long-term potentiation in which the induction rules approximate Hebb's postulate (the need for a conjunction of pre- and postsynaptic activity).

Asynchronous afferent volley

When multiple input axons fire independently of one another.

Place cells

Neurons that tend to fire when an animal is in a specific region of its spatial arena. Such behaviour is typical of hippocampal principal cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kullmann, D., Lamsa, K. Long-term synaptic plasticity in hippocampal interneurons. Nat Rev Neurosci 8, 687–699 (2007). https://doi.org/10.1038/nrn2207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing