Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primate brains in the wild: the sensory bases for social interactions

Key Points

  • Primates have evolved to detect and process behaviourally relevant stimuli, and are specialized for social behaviour. A comparative and neuroethological approach to the study of primates should produce new insights into the neural bases of sociality. The most important, and best understood, sensory modalities in primates are vision and hearing.

  • Primates are the only mammals to have marked sex differences in colouration. These sex-specific colours, such as the blue scrota of vervet monkeys and the red faces of rhesus monkeys, can denote hierarchical status and in some cases might influence females' choice of mate.

  • Primates can visually recognize individual conspecifics and their interrelationships. They also show some apparent understanding of the significance of gaze direction for future actions and for understanding about objects.

  • The clearest link between visual socioecology and neurobiology is the 'face cells' of the temporal cortex, which respond selectively to faces or facial features. The inferior temporal cortex seems to be important for processing facial identity, and the superior temporal sulcus for processing facial expressions and gaze direction.

  • Primates can also use auditory signals — vocalizations — to identify other individuals and their relationships, or to distinguish group members from foreign individuals. They can also determine the dominance and reproductive status of signallers, and judge group size. Many primate species also produce copulation calls that might be important for attracting mates.

  • Male primates often perform elaborate displays that involve repeated vocalizations. As well as attracting mates, these calls can intimidate rivals and signify dominance. If such calls are costly to produce, they can serve as an accurate indicator of fitness.

  • Our understanding of the neural correlates of auditory behaviour is largely based on studies of the squirrel monkey, although other species have been investigated more recently. Temporal features of vocalizations seem to be important for driving responses in the primary auditory cortex. In higher cortical areas, neurons often respond to more complex sounds.

  • Visual and auditory communication must also be considered in combination. Monkeys can match specific calls with the appropriate facial expressions without training.

  • Hauser proposed a 'socioecologically sensible neuroscience' that requires researchers to take account of the fact that an animal's brain is exquisitely suited to the socioecological problems faced by that species. It is important to bring together ethology and sensory neuroscience, and to compare primates that have different lifestyles, to understand the evolution of primate brains.

Abstract

Each organism in the animal kingdom has evolved to detect and process a specific set of stimuli in its environment. Studies of an animal's socioecology can help us to identify these stimuli, as well as the natural behavioural responses that they evoke and control. Primates are no exception, but many of our specializations are in the social domain. How did the human brain come to be so exquisitely tuned to social interactions? Only a comparative approach will provide the answer. Behavioural studies are shedding light on the sensory bases for non-human primate social interactions, and data from these studies are paving the way for investigations into the neural bases of sociality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sexual colouration.
Figure 2: The eyes have it.
Figure 3: Current models of temporal lobe cortical anatomy.
Figure 4: Relationship between reaction times and the latency of one neuron in the inferior temporal gyrus of a monkey performing a delayed match-to-sample task.
Figure 5: Individual variation in vocalizations.
Figure 6: Multimodal vocalizations.

Similar content being viewed by others

References

  1. Griffin, D. R., Webster, F. A. & Michael, C. R. The echolocation of flying insects by bats. Anim. Behav. 8, 151–154 (1960).

    Article  Google Scholar 

  2. Suga, N., O'Neill, W. E. & Manabe, T. Cortical-neurons sensitive to combinations of information-bearing elements of biosonar signals in mustache bat. Science 200, 778–781 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Heiligenberg, W. Neural Nets in Electric Fish (MIT Press, Cambridge, Massachusetts, 1991).

    Google Scholar 

  4. Margoliash, D. Functional organization of forebrain pathways for song production and perception. J. Neurobiol. 33, 671–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Preuss, T. M. Taking the measure of diversity: comparative alternatives to the model-animal paradigm in cortical neuroscience. Brain Behav. Evol. 55, 287–299 (2000). An elegant and well-argued review of brain diversity that advocates a comparative approach to mammalian neuroscience.

    Article  CAS  PubMed  Google Scholar 

  6. Preuss, T. M. in Evolutionary Anatomy of the Primate Cerebral Cortex (eds Falk, D. & Gibson, K. R.) 138–164 (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  7. Barrett, L., Gaynor, D. & Henzi, S. P. A dynamic interaction between aggression and grooming reciprocity among female chacma baboons. Anim. Behav. 63, 1047–1053 (2002).

    Article  Google Scholar 

  8. Jolly, A. Lemur social behavior and primate intelligence. Science 153, 501–506 (1966).

    Article  CAS  PubMed  Google Scholar 

  9. Humphrey, N. K. in Growing Points in Ethology (eds Bateson, P. P. G. & Hinde, R. A.) 303–317 (Cambridge Univ. Press, 1976). One of the original papers introducing the idea that primate intelligence is specialized for operations in the social domain. It is beautifully written and spawned many new avenues of research in primate behaviour.

    Google Scholar 

  10. Cheney, D. L. & Seyfarth, R. M. How Monkeys See the World (Univ. Chicago Press, 1990). This book is a must-read for anyone interested in primate behaviour. It describes an ingenious series of experiments on vervet monkeys in the wild.

    Book  Google Scholar 

  11. Byrne, R. W. & Whiten, A. Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans (Oxford Univ. Press, 1988).

    Google Scholar 

  12. Cheney, D. L. & Seyfarth, R. M. Social and non-social knowledge in vervet monkeys. Phil. Trans. R. Soc. Lond. B 308, 187–201 (1985).

    Article  Google Scholar 

  13. Dunbar, R. I. M. The social brain hypothesis. Evol. Anthropol. 6, 178–190 (1998).

    Article  Google Scholar 

  14. Dunbar, R. I. M. & Bever, J. Neocortex size predicts group size in carnivores and some insectivores. Ethology 104, 695–708 (1998).

    Article  Google Scholar 

  15. Deaner, R. O., Nunn, C. L. & Schaik, C. P. Comparative tests of primate cognition: different scaling methods produce different results. Brain Behav. Evol. 55, 44–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Brothers, L. & Ring, B. A neuroethological framework for the representation of minds. J. Cogn. Neurosci. 4, 107–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Brothers, L. Brain mechanisms of social cognition. J. Psychopharmacol. 10, 2–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Emery, N. J. & Amaral, D. G. in Cognitive Neuroscience of Emotion (ed. Nadel, L.) 156–191 (Oxford Univ. Press, 2000).

    Google Scholar 

  19. Darwin, C. The Descent of Man and Selection in Relation to Sex (John Murray, London, 1871).

    Book  Google Scholar 

  20. Gerald, M. S. Primate colour predicts social status and aggressive outcome. Anim. Behav. 61, 559–566 (2001). A study that investigated the important role of scrotal colour in social interactions between male vervet monkeys. It used an experimental approach to examine mechanisms of natural behaviour.

    Article  Google Scholar 

  21. Dunbar, R. I. M. Reproductive Decisions: An Economic Analysis of Gelada Baboon Social Strategies (Princeton Univ. Press, 1984).

    Google Scholar 

  22. Setchell, J. M. & Dixson, A. F. Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Horm. Behav. 39, 177–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Isbell, L. A. Seasonal and social correlates of changes in hair, skin, and scrotal condition in vervet monkeys (Cercopithecus aethiops) of Amboseli National Park, Kenya. Am. J. Primatol. 36, 61–70 (1995).

    Article  PubMed  Google Scholar 

  24. Struhsaker, T. T. Behavior of vervet monkeys (Cercopithecus aethiops). Univ. Calif. Pub. Zool. 82, 1–74 (1967).

    Google Scholar 

  25. Waitt, C. et al. Evidence from rhesus macaques suggests that male coloration plays a role in female primate mate choice. Proc. R. Soc. Lond. B 270, 144–146 (2003).

    Article  Google Scholar 

  26. Rhodes, L. et al. Effects of administration of testosterone, dihydrotestosterone, oestrogen and fadrozole, an aromatase inhibitor, on sex skin colour in intact male rhesus macaques. J. Reprod. Fertil. 111, 51–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zahavi, A. Mate selection: a selection for a handicap. J. Theoret. Biol. 53, 205–214 (1975).

    Article  CAS  Google Scholar 

  28. Langlois, J. H. et al. Infant preferences for attractive faces: rudiments of a stereotype? Dev. Psychol. 23, 363–369 (1987).

    Article  Google Scholar 

  29. Quinsey, V. L., Earls, C., Ketsetzis, M. & Karamanoukian, A. View time as a measure of sexual interest. Ethol. Sociobiol. 17, 341–354 (1996).

    Article  Google Scholar 

  30. Demaria, C. & Thierry, B. Responses to animal stimulus photographs in stumptailed macaques (Macaca arctoides). Primates 29, 237–244 (1988).

    Article  Google Scholar 

  31. Humphrey, N. K. Species and individuals in the perceptual world of monkeys. Perception 3, 105–114 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Pascalis, O. & Bachevalier, J. Face recognition in primates: a cross-species study. Behav. Proc. 43, 87–96 (1998).

    Article  CAS  Google Scholar 

  33. Butler, R. A. The differential effect of visual and auditory incentives on the performance of monkeys. Am. J. Psychol. 71, 591–593 (1958).

    Article  CAS  PubMed  Google Scholar 

  34. Rosenfeld, S. A. & Van Hoesen, G. W. Face recognition in the rhesus monkey. Neuropsychologia 17, 503–509 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Dasser, V. Slides of group members as representations of the real animals (Macaca fascicularis). Ethology 76, 65–73 (1987).

    Article  Google Scholar 

  36. Dasser, V. A social concept in Java monkeys. Anim. Behav. 36, 225–230 (1988).

    Article  Google Scholar 

  37. Haude, R. H., Graber, J. G. & Farres, A. G. Visual observing by rhesus monkeys — some relationships with social dominance ranks. Anim. Learn. Behav. 4, 163–166 (1976). An intriguing study demonstrating that, within a social group, rhesus monkeys view different individuals in the dominance hierarchy in different ways. The questions of what cues are used and why are left open.

    Article  CAS  PubMed  Google Scholar 

  38. Guo, K., Robertson, R. G., Mahmoodi, S., Tadmor, Y. & Young, M. P. How do monkeys view faces? A study of eye movements. Exp. Brain Res. 150, 363–374 (2003).

    Article  PubMed  Google Scholar 

  39. Keating, C. F. & Keating, E. G. Visual scan patterns of rhesus monkeys viewing faces. Perception 11, 211–219 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Nahm, F. K. D., Perret, A., Amaral, D. G. & Albright, T. D. How do monkeys look at faces? J. Cogn. Neurosci. 9, 611–623 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Deaner, R. O. & Platt, M. L. Reflexive social attention in monkeys and humans. Curr. Biol. 13, 1609–1613 (2003). This pithy study shows that both humans and monkeys reflexively shift their attention to where another monkey is looking. The similarities between species indicate that the underlying mechanisms are homologous.

    Article  CAS  PubMed  Google Scholar 

  42. Emery, N. J., Lorincz, E. N., Perrett, D. I., Oram, M. W. & Baker, C. I. Gaze following and joint attention in rhesus monkeys (Macaca mulatta). J. Comp. Psychol. 111, 286–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Lorincz, E. N., Baker, C. I. & Perrett, D. I. in Picture Perception in Animals (ed. Fagot, J.) 343–372 (Psychology Press, Hove, East Sussex, 2000).

    Google Scholar 

  44. Tomasello, M., Call, J. & Hare, B. Five primate species follow the visual gaze of conspecifics. Anim. Behav. 55, 1063–1069 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Anderson, J. R. & Mitchell, R. W. Macaques but not lemurs co-orient visually with humans. Folia Primatol. 70, 17–22 (1999).

    Article  CAS  Google Scholar 

  46. Tomasello, M., Hare, B. & Fogleman, T. The ontogeny of gaze following in chimpanzees, Pan troglodytes, and rhesus macaques, Macaca mulatta. Anim. Behav. 61, 335–343 (2001).

    Article  Google Scholar 

  47. Itakura, S. An exploratory study of gaze-monitoring in nonhuman primates. Jap. Psychol. Res. 38, 174–180 (1996).

    Article  Google Scholar 

  48. Povinelli, D. J. & Eddy, T. J. Factors influencing young chimpanzees' (Pan troglodytes) recognition of attention. J. Comp. Psychol. 110, 336–345 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Povinelli, D. J. & Eddy, T. J. Specificity of gaze-following in young chimpanzees. Br. J. Dev. Psychol. 15, 213–222 (1997).

    Article  Google Scholar 

  50. Tomasello, M., Hare, B. & Agnetta, B. Chimpanzees, Pan troglodytes, follow gaze direction geometrically. Anim. Behav. 58, 769–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Santos, L. R. & Hauser, M. D. How monkeys see the eyes: cotton-top tamarins' reactions to changes in visual attention and action. Anim. Cogn. 2, 131–139 (1999).

    Article  Google Scholar 

  52. Call, J. & Tomasello, M. Production and comprehension of referential pointing by orangutans (Pongo pygmaeus). J. Comp. Psychol. 108, 307–317 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Heyes, C. Theory of mind in nonhuman primates. Behav. Brain Sci. 21, 101–134 (1998).

    CAS  PubMed  Google Scholar 

  54. Tomasello, M. & Call, J. Primate Cognition (Oxford Univ. Press, 1997).

    Google Scholar 

  55. Anderson, J. R., Sallaberry, P. & Barbier, H. Use of experimenter-given cues during object-choice tasks by capuchin monkeys. Anim. Behav. 49, 201–208 (1995).

    Article  Google Scholar 

  56. Anderson, J. R., Montant, M. & Schmitt, D. Rhesus monkeys fail to use gaze direction as an experimenter-given cue in an object-choice task. Behav. Proc. 37, 47–55 (1996).

    Article  CAS  Google Scholar 

  57. Call, J., Hare, B. & Tomasello, M. Chimpanzee gaze following in an object-choice task. Anim. Cogn. 1, 89–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Call, J., Agnetta, B. & Tomasello, M. Cues the chimpanzees do and do not use to find hidden objects. Anim. Cogn. 3, 23–34 (2000).

    Article  Google Scholar 

  59. Itakura, S. & Anderson, J. R. Learning to use experimenter-given cues during an object choice task by a capuchin monkey. Cahiers de Psychol. Cogn. 15, 103–112 (1996).

    Google Scholar 

  60. Itakura, S., Agnetta, B., Hare, B. & Tomasello, M. Chimpanzee use of human and conspecific social cues to locate hidden food. Dev. Sci. 2, 448–456 (1999).

    Article  Google Scholar 

  61. Peignot, P. & Anderson, J. R. Use of experimenter-given manual and facial cues by gorillas. J. Comp. Psychol. 113, 253–260 (1999).

    Article  Google Scholar 

  62. Hare, B. Can competitive paradigms increase the validity of experiments on primate social cognition? Anim. Cogn. 4, 269–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Hare, B., Call, J., Agnetta, B. & Tomasello, M. Chimpanzees know what conspecifics do and do not see. Anim. Behav. 59, 771–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Hare, B., Call, J. & Tomasello, M. Do chimpanzees know what conspecifics know? Anim. Behav. 61, 139–151 (2001).

    Article  PubMed  Google Scholar 

  65. Hirata, S. & Matsuzawa, T. Tactics to obtain a hidden food item in chimpanzee pairs (Pan troglodytes). Anim. Cogn. 4, 285–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Povinelli, D. J. & Bering, J. M. The mentality of apes revisited. Curr. Dir. Psychol. Sci. 11, 115–119 (2002).

    Article  Google Scholar 

  67. Regan, B. C. et al. Fruits, foliage and the evolution of primate colour vision. Phil. Trans. R. Soc. Lond. B 356, 229–283 (2001).

    Article  CAS  Google Scholar 

  68. Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).

    Article  CAS  PubMed  Google Scholar 

  69. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perrett, D. I., Rolls, E. T. & Caan, W. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Hasselmo, M. E., Rolls, E. T. & Baylis, G. C. The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32, 203–218 (1989). One of the original studies demonstrating a functional and anatomical dissociation for different types of face processing — identity versus expressions. It has since been replicated numerous times in the human imaging literature.

    Article  CAS  PubMed  Google Scholar 

  72. Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Eifuku, S., DeSouza, W. C., Tamura, R., Nishijo, H. & Ono, T. Neuronal correlates of face identification in the monkey anterior temporal cortical areas. J. Neurophysiol. 91, 358–371 (2004).

    Article  PubMed  Google Scholar 

  74. Perrett, D. I. et al. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. R. Soc. Lond. B 223, 293–317 (1985). A classic study showing that superior temporal sulcus neurons are sensitive to eye gaze direction. There are many imaging studies that indicate that similar processing occurs in the human superior temporal sulcus.

    Article  CAS  PubMed  Google Scholar 

  75. Campbell, R., Heywood, C. A., Cowey, A., Regard, M. & Landis, T. Sensitivity to eye gaze in prosopagnosic patients and monkeys with superior temporal sulcus ablation. Neuropsychologia 28, 1123–1142 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Heywood, C. A. & Cowey, A. The role of the 'face-cell' area in the discrimination and recognition of faces by monkeys. Phil. Trans. R. Soc. Lond. B 335, 31–38 (1992).

    Article  CAS  Google Scholar 

  77. Eacott, M. J., Heywood, C. A., Gross, C. G. & Cowey, A. Visual discrimination impairments following lesions of the superior temporal sulcus are not specific for facial stimuli. Neuropsychologia 31, 609–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Jellema, T., Baker, C. I., Wicker, B. & Perrett, D. I. Neural representation for the perception of the intentionality of actions. Brain Cogn. 44, 280–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Oram, M. W. & Perrett, D. I. Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J. Cogn. Neurosci. 6, 99–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Rodman, H. R., Skelly, J. P. & Gross, C. G. Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys. Proc. Natl Acad. Sci. USA 88, 7572–7575 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sackett, G. P. Monkeys reared in isolation with pictures as visual input: evidence for an innate releasing mechanism. Science 154, 1468–1473 (1966).

    Article  CAS  PubMed  Google Scholar 

  82. Kendrick, K. M. & Baldwin, B. A. Cells in temporal cortex of conscious sheep can respond preferentially to the sight of faces. Science 236, 448–450 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Huber, E. Evolution of facial musculature and cutaneous field of trigeminus, part I. Q. Rev. Biol. 5, 133–188 (1930).

    Article  Google Scholar 

  84. Huber, E. Evolution of facial musculature and cutaneous field of trigeminus, part II. Q. Rev. Biol. 5, 389–437 (1930).

    Article  Google Scholar 

  85. Andrew, R. J. The origin and evolution of the calls and facial expressions of the primates. Behaviour 20, 1–109 (1962).

    Article  Google Scholar 

  86. Fitch, W. T. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J. Acoust. Soc. Am. 102, 1213–1222 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Rendall, D., Rodman, P. S. & Emond, R. E. Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Anim. Behav. 51, 1007–1015 (1996).

    Article  Google Scholar 

  88. Semple, S. Individuality and male discrimination of female copulation calls in the yellow baboon. Anim. Behav. 61, 1023–1028 (2001).

    Article  Google Scholar 

  89. Semple, S., McComb, K., Alberts, S. & Altmann, J. Information content of female copulation calls in yellow baboons. Am. J. Primatol. 56, 43–56 (2002).

    Article  PubMed  Google Scholar 

  90. Weiss, D. J., Garibaldi, B. T. & Hauser, M. D. The production and perception of long calls by cotton-top tamarins (Saguinus oedipus): acoustic analyses and playback experiments. J. Comp. Psychol. 115, 258–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Rendall, D., Owren, M. J. & Rodman, P. S. The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. J. Acoust. Soc. Am. 103, 602–614 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Cheney, D. L. & Seyfarth, R. M. Vocal recognition in free-ranging vervet monkeys. Anim. Behav. 28, 362–367 (1980).

    Article  Google Scholar 

  93. Cheney, D. L. & Seyfarth, R. M. Recognition of individuals within and between groups of free-ranging vervet monkeys. Am. Zool. 22, 519–529 (1982).

    Article  Google Scholar 

  94. Cheney, D. L. & Seyfarth, R. M. Assessment of meaning and the detection of unreliable signals by vervet monkeys. Anim. Behav. 36, 477–486 (1988). A neat study showing that vervet monkeys know the meaning of vocalizations independent of acoustic structure, and can recognize the same individual by voice alone independent of the call type produced.

    Article  Google Scholar 

  95. Miller, C. T., Miller, J., Gil-da-Costa, R. & Hauser, M. D. Selective phonotaxis by cotton-top tamarins (Saguinus oedipus). Behaviour 138, 811–826 (2001).

    Article  Google Scholar 

  96. Waser, P. M. Individual recognition, intragroup cohesion and intergroup spacing: evidence from sound playback to forest monkeys. Behaviour 60, 28–74 (1977).

    Article  Google Scholar 

  97. Teixidor, P. & Byrne, R. W. The 'whinny' of spider monkeys: individual recognition before situational meaning. Behaviour 136, 279–308 (1999).

    Article  Google Scholar 

  98. Robinson, J. G. An analysis of the organization of vocal communication in the titi monkey (Callicebus moloch). Zeit. Tierpsychol. 49, 381–405 (1979).

    Article  CAS  Google Scholar 

  99. Owren, M. J. & Rendall, D. Sound on the rebound: bringing form and function back to the forefront in understanding nonhuman primate vocal signaling. Evol. Anthropol. 10, 58–71 (2001). An important review advocating a shift away from comparing primate vocalizations with human language. The authors suggest that we should focus instead on understanding why certain vocalizations are acoustically structured in particular ways and the role that such structure has in influencing the behaviour of conspecifics.

    Article  Google Scholar 

  100. Ryan, M. J. The Tungara Frog: a Study in Sexual Selection and Communication (Univ. Chicago Press, 1985).

    Google Scholar 

  101. Hauser, M. D. The Evolution of Communication (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  102. Semple, S. The function of Barbary macaque copulation calls. Proc. R. Soc. Lond. B 265, 287–291 (1998).

    Article  CAS  Google Scholar 

  103. Semple, S. & McComb, K. Perception of female reproductive state from vocal cues in a mammal species. Proc. R. Soc. Lond. B 267, 707–712 (2000).

    Article  CAS  Google Scholar 

  104. Engelhardt, A. et al. Assessment of female reproductive status by male longtailed macaques, Macaca fascicularis, under natural conditions. Anim. Behav. 67, 915–924 (2004).

    Article  Google Scholar 

  105. Hauser, M. D. Rhesus monkey copulation calls — honest signals for female choice. Proc. R. Soc. Lond. B 254, 93–96 (1993).

    Article  CAS  Google Scholar 

  106. Manson, J. H. Rhesus macaque copulation calls: re-evaluating the 'honest signal' hypothesis. Primates 37, 145–154 (1996).

    Article  Google Scholar 

  107. Gouzoules, H., Gust, D. A., Donaghey, B. & St Andre, E. Estrus vocalizations in two primate species (Cercocebus torquatus atys and Macaca nemestrina): evidence for an effect of intrasexual competition. Evol. Comm. 2, 189–215 (1998).

    Article  Google Scholar 

  108. Packer, C. Male dominance and reproductive activity in Papio anubis. Anim. Behav. 28, 37–45 (1979).

    Article  Google Scholar 

  109. Fischer, J., Hammerschmidt, K., Cheney, D. L. & Seyfarth, R. M. Acoustic features of male baboon loud calls: influences of context, age, and individuality. J. Acoust. Soc. Am. 111, 1465–1474 (2002).

    Article  PubMed  Google Scholar 

  110. Kitchen, D. M., Cheney, D. L. & Seyfarth, R. M. Female baboons' responses to male loud calls. Ethology 109, 401–412 (2003).

    Article  Google Scholar 

  111. Kitchen, D. M., Seyfarth, R. M., Fischer, J. & Cheney, D. L. Loud calls as indicators of dominance in male baboons (Papio cynocephalus ursinus). Behav. Ecol. Sociobiol. 53, 374–384 (2003).

    Google Scholar 

  112. Kitchen, D. M. Alpha male black howler monkey responses to loud calls: effect of numeric odds, male companion behaviour and reproductive investment. Anim. Behav. 67, 125–139 (2004).

    Article  Google Scholar 

  113. Bergman, T. J., Beehner, J. C., Cheney, D. L. & Seyfarth, R. M. Hierarchical classification by rank and kinship in baboons. Science 302, 1234–1236 (2003). A brilliant study demonstrating, with the use of acoustic playback, that baboons are aware of the multi-tiered hierarchical structure of their social groups.

    Article  CAS  PubMed  Google Scholar 

  114. Ghazanfar, A. A. & Hauser, M. D. The auditory behaviour of primates: a neuroethological perspective. Curr. Opin. Neurobiol. 11, 712–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Ghazanfar, A. A. (ed.) Primate Audition: Ethology and Neurobiology (CRC Press, Boca Raton, Florida, 2002).

    Book  Google Scholar 

  116. Capranica, R. R. The untuning of the tuning curve: is it time? Sem. Neurosci. 4, 401–408 (1992). A critical review of auditory neuroscience that is still relevant today. It argues that the 'tuning curve' approach that is popular among auditory neuroscientists is misguided, behaviourally irrelevant and has produced few, if any, insights into central auditory functions.

    Article  Google Scholar 

  117. Newman, J. D. in Primate Audition: Ethology and Neurobiology. (ed. Ghazanfar, A. A.) 227–246 (CRC Press, Boca Raton, Florida, 2002).

    Google Scholar 

  118. Winter, P. & Funkenstein, H. H. Effect of species-specific vocalization on discharge of auditory cortical cells in awake squirrel monkey (Saimiri sciureus). Exp. Brain Res. 18, 489–504 (1973).

    Article  CAS  PubMed  Google Scholar 

  119. Newman, J. D. & Wollberg, Z. Multiple coding of species-specific vocalizations in auditory cortex of squirrel monkeys. Brain Res. 54, 287–304 (1973).

    Article  CAS  PubMed  Google Scholar 

  120. Hackett, T. A. in Primate Audition: Ethology and Neurobiology. (ed. Ghazanfar, A. A.) 199–226 (CRC Press, Boca Raton, Florida, 2002).

    Google Scholar 

  121. Glass, I. & Wollberg, Z. Responses of cells in the auditory cortex of awake squirrel monkeys to normal and reversed species-specific vocalizations. Hearing Res. 9, 27–33 (1983).

    Article  CAS  Google Scholar 

  122. Newman, J. D. & Wollberg, Z. V. Responses of single neurons in auditory cortex of squirrel monkeys to variants of a single call type. Exp. Neurol. 40, 821–824 (1973).

    Article  CAS  PubMed  Google Scholar 

  123. Bieser, A. Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys. Exp. Brain Res. 122, 139–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, X. Q., Merzenich, M. M., Beitel, R. & Schreiner, C. E. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J. Neurophysiol. 74, 2685–2706 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Nagarajan, S. S. et al. Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J. Neurophysiol. 87, 1723–1737 (2002).

    Article  PubMed  Google Scholar 

  126. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J. P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Ghazanfar, A. A. & Santos, L. R. in Primate Audition: Ethology and Neurobiology. (ed. Ghazanfar, A. A.) 1–12 (CRC Press, Boca Raton, Florida, 2002).

    Book  Google Scholar 

  129. Miller, C. T. & Ghazanfar, A. A. in The Cognitive Animal (eds Bekoff, M., Allen, C. & Burghardt, G. M.) 265–273 (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  130. Ghazanfar, A. A., Flombaum, J. I., Miller, C. T. & Hauser, M. D. The units of perception in the antiphonal calling behavior of cotton-top tamarins (Saguinus oedipus): playback experiments with long calls. J. Comp. Physiol. 187, 27–35 (2001).

    Article  CAS  Google Scholar 

  131. Ghazanfar, A. A., Smith-Rohrberg, D., Pollen, A. A. & Hauser, M. D. Temporal cues in the antiphonal long-calling behaviour of cotton-top tamarins. Anim. Behav. 64, 427–438 (2002). A behavioural study demonstrating the important role of temporal cues in the perception of multi-syllabic calls in cotton-top tamarins. These behavioural data support some of the neurophysiological findings in the closely related marmoset monkey.

    Article  Google Scholar 

  132. Hauser, M. D., Evans, C. S. & Marler, P. The role of articulation in the production of rhesus monkey, Macaca mulatta, vocalizations. Anim. Behav. 45, 423–433 (1993).

    Article  Google Scholar 

  133. Partan, S. R. Single and multichannel signal composition: facial expressions and vocalizations of rhesus macaques (Macaca mulatta). Behaviour 139, 993–1027 (2002). A thorough and quantitative study emphasizing the multimodal nature of rhesus monkey communication.

    Article  Google Scholar 

  134. Rowe, C. Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58, 921–931 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Ghazanfar, A. A. & Logothetis, N. K. Facial expressions linked to monkey calls. Nature 423, 937–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Izumi, A. & Kojima, S. Matching vocalizations to vocalizing faces in a chimpanzee Pan troglodytes. Anim. Cogn. 10 Mar 2004 (doi:10.1007/s10071-004-0212-4).

  137. Parr, L. A. Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition. Anim. Cogn. 2 Mar 2004 (doi:10.1007/s10071-004-0207-1).

  138. Seltzer, B. & Pandya, D. N. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey — a retrograde tracer study. J. Comp. Neurol. 343, 445–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Hackett, T. A., Preuss, T. M. & Kaas, J. H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441, 197–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Stephan, H., Baron, G. & Frahm, H. D. in Comparative Primate Biology. Vol. 4 (eds Steklis, H. D. & Erwin, J.) 1–38 (Liss, New York, 1988).

    Google Scholar 

  141. Radinsky, L. Primate brain evolution. Am. Sci. 63, 656–663 (1975).

    CAS  PubMed  Google Scholar 

  142. Kaas, J. H. The evolution of isocortex. Brain Behav. Evol. 46, 187–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. Preuss, T. M. Do rats have prefrontal cortex? The Rose–Woolsey–Akert program reconsidered. J. Cogn. Neurosci. 7, 1–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Kaas, J. H. & Preuss, T. M. in Mammal Phylogeny: Placentals (eds Szalay, F. S., Novacek, M. J. & McKenna, M. C.) 115–128 (Springer, New York, 1993).

    Book  Google Scholar 

  145. Kaas, J. H. The organization of neocortex in mammals: implications for theories of brain function. Ann. Rev. Neurosci. 38, 129–151 (1987).

    CAS  Google Scholar 

  146. Pons, T. P., Garraghty, P. E. & Mishkin, M. Serial and parallel processing of tactual information in somatosensory cortex of rhesus monkeys. J. Neurophysiol. 68, 518–527 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Sherwood, C. C. et al. Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav. Evol. 61, 28–44 (2003). This study relates the sizes of Betz and Meynert neurons to other pyramidal neurons across many different primate species. The authors show that there are important and intriguing species differences that might relate to species-specific behaviours.

    Article  PubMed  Google Scholar 

  148. Nimchinsky, E. A. et al. A neuronal morphologic type unique to humans and great apes. Proc. Natl Acad. Sci. USA 96, 5268–5273 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Preuss, T. M., Qi, H. X. & Kaas, J. H. Distinctive compartmental organization of human primary visual cortex. Proc. Natl Acad. Sci. USA 96, 11601–11606 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Preuss, T. M. in The Cognitive Neurosciences. (ed. Gazzaniga, M. S.) 1227–1241 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank Joost Maier and Kari Hoffman for their comments on the manuscript. We dedicate this review to Marc Hauser, our advisor, mentor and colleague. We hope this review will contribute to his vision of an ethologically-sound systems neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif A. Ghazanfar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

Apes

New World Monkeys

Old World Monkeys

Glossary

MIDDLE TEMPORAL VISUAL AREA

An extrastriate visual cortical area that is important for the analysis of visual motion.

MEYNERT CELLS

Specialized pyramidal neurons found in the primary visual cortex.

BETZ CELLS

Giant pyramidal neurons that are located in layer V of the primary motor cortex. Their axons project to the spinal cord, terminating directly on motor neurons.

MACHIAVELLIAN AGENT

An agent that can make or break alliances to serve his/her selfish needs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazanfar, A., Santos, L. Primate brains in the wild: the sensory bases for social interactions. Nat Rev Neurosci 5, 603–616 (2004). https://doi.org/10.1038/nrn1473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing