Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurological diseases

Targeting programmed cell death in neurodegenerative diseases

Key Points

  • There is evidence for the occurrence of programmed cell death (PCD) in several neurodegenerative disorders. Most of the evidence comes from studies in animal models of conditions such as Parkinson's and Huntington's diseases (PD and HD, respectively), and amyotrophic lateral sclerosis (ALS).

  • There are two basic pathways of PCD: the mitochondrial (intrinsic) and the death receptor (extrinsic) pathways. Both pathways require the involvement of proteases known as caspases, the activity of which is regulated by different proteins of the so-called Bcl2 family.

  • PCD has been proposed to take place in the brains of people with PD, although the best evidence in favour of this idea has come from studies of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of parkinsonism. Here, MPTP administration is accompanied by the activation of caspases. Moreover, drugs that interfere with early stages of PCD have been successful at preventing neurodegeneration in this model.

  • PCD has also been documented to take place in association with ALS, mostly in transgenic models of the disease. In this case, interfering with PCD delays neuronal death and prolongs survival. However, as death eventually ensues, it seems that targeting PCD in ALS can slow the death process, but cannot stop it altogether.

  • The data in relation to PCD in HD is still incomplete, but there are reasons to believe that caspase activation might participate in the neuronal death that accompanies this disease.

  • The PCD machinery might be a good target for the development of drugs against these neurodegenerative disorders. However, PCD is only one of the processes that contributes to the pathological changes, making it necessary to think in terms of attacking the problem from other positions. In addition, therapeutic efforts should take into account that caspase activation might be a late process in the PCD cascade, a fact that might limit their usefulness as drug targets.

Abstract

Molecular pathways of programmed cell death (PCD) are activated in various neurodegenerative disorders including Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. In these diseases, PCD might be pathogenic, and targeting it might mitigate neurodegeneration. To identify potential neuroprotective targets within the PCD machinery, the expression and activity of some of its components have been altered by genetic or pharmacological means in experimental models of neurodegenerative diseases. The results of these studies have provided leads for the development of neuroprotective strategies for these progressive, disabling and often fatal disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular pathways of programmed cell death.
Figure 2: Proposed mechanism of MPTP-induced programmed cell death.
Figure 3: Targeting programmed cell death in amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Clarke, P. G. H. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213 (1990).

    Article  CAS  Google Scholar 

  2. Clarke, P. G. H. Cell death and diseases of the nervous system (eds Koliatsos, V. E. & Ratan, R. R.) 3–28 (Humana Press, New Jersey, 1999).

    Book  Google Scholar 

  3. Sperandio, S., de Belle, I. & Bredesen, D. E. An alternative, nonapoptotic form of programmed cell death. Proc. Natl Acad. Sci. USA 97, 14376–14381 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kane, D. J., Örd, T., Anton, R. & Bredesen, D. E. Expression of bcl-2 inhibits necrotic neural cell death. J. Neurosci. Res. 40, 269–275 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Sloviter, R. S. Apoptosis: a guide for the perplexed. Trends Pharmacol. Sci. 23, 19–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kingsbury, A. E., Mardsen, C. D. & Foster, O. J. DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov. Disord. 13, 877–884 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Marx, J. New leads on the 'how' of Alzheimer's. Science 293, 2192–2194 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Graham, S. H. & Chen, J. Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 99–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Przedborski, S., Vila, M. & Jackson-Lewis, V. Neurodegeneration: what is it and where are we? J. Clin. Invest. 111, 3–10 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Marsden, V. S. et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wyss-Coray, T. & Mucke, L. Inflammation in neurodegenerative disease — a double-edged sword. Neuron 35, 419–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Slee, E. A. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspase-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281–292 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasula, S. M. et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol. Chem. 275, 36152–36157 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X., Yang, C., Chai, J., Shi, Y. & Xue D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298, 1587–1592 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. & Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34287–34294 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003 Mar 6 (DOI 10.1126/science.1081208).

  28. Fahn, S. & Przedborski, S. Merritt's neurology (ed. Rowland, L. P) 679–693 (Lippincott, Williams & Wilkins, New York, 2000).

  29. Mochizuki, H., Goto, K., Mori, H. & Mizuno, Y. Histochemical detection of apoptosis in Parkinson's disease. J. Neurol. Sci. 137, 120–123 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  31. Tatton, N. A., Maclean-Fraser, A., Tatton, W. G., Perl, D. P. & Olanow, C. W. A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson's disease. Ann. Neurol. 44, S142–S148 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Tompkins, M. M., Basgall, E. J., Zamrini, E. & Hill, W. D. Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am. J. Pathol. 150, 119–131 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kosel, S., Egensperger, R., Von Eitzen, U., Mehraein, P. & Graeber, M. B. On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol. (Berl.) 93, 105–108 (1997).

    Article  CAS  Google Scholar 

  34. Banati, R. B., Daniel, S. E. & Blunt, S. B. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov. Disord. 13, 221–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Wullner, U. et al. Cell death and apoptosis regulating proteins in Parkinson's disease — a cautionary note. Acta Neuropathol. (Berl.) 97, 408–412 (1999).

    Article  CAS  Google Scholar 

  36. Hartmann, A. et al. Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease? J. Neurochem. 76, 1785–1793 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tatton, N. A. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp. Neurol. 166, 29–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Hartmann, A. et al. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc. Natl Acad. Sci. USA 97, 2875–2880 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hartmann, A. et al. Increased expression and redistribution of the antiapoptotic molecule Bcl-xL in Parkinson's disease. Neurobiol. Dis. 10, 28–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Hartmann, A. et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis. J. Neurosci. 21, 2247–2255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viswanath, V. et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J. Neurosci. 21, 9519–9528 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci. 3, 1301–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hoglinger, G. U. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 1–12 (2003).

    Article  Google Scholar 

  44. Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. van der Putten, H. et al. Neuropathology in mice expressing human α-synuclein. J. Neurosci. 20, 6021–6029 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Matsuoka, Y. et al. Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol. Dis. 8, 535–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, M. K. et al. Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53-Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice PG-8968-73. Proc. Natl Acad. Sci. USA 99, 8968–73 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jackson-Lewis, V., Jakowec, M., Burke, R. E. & Przedborski, S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4, 257–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Tatton, N. A. & Kish, S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77, 1037–1048 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Vila, M. et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 2837–2842 (2001). Direct evidence indicating that the pro-PCD protein Bax is essential in MPTP-induced neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, L. et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci. 18, 8145–8152 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Offen, D. et al. Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc. Natl Acad. Sci. USA 95, 5789–5794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M. & Manfredi, J. J. A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21, 990–999 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Mandir, A. S. et al. A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J. Neurochem. 83, 186–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Mandir, A. S. et al. Poly (ADP-ribose) polymerase activation mediates MPTP-induced parkinsonism. Proc. Natl Acad. Sci. USA 96, 5774–5779 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duan, W. et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann. Neurol. 52, 597–606 (2002). This study demonstrates that intraperitoneal injections of two p53 inhibitors attenuates Bax upregulation, improves motor function, reduces damage to nigrostriatal DA neurons and reduces depletion of DA and its metabolites in MPTP-treated mice.

    Article  CAS  PubMed  Google Scholar 

  58. Trimmer, P. A., Smith, T. S., Jung, A. B. & Bennett, J. P. Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 5, 233–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Saporito, M. S., Thomas, B. A. & Scott, R. W. MPTP activates c-Jun NH2-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75, 1200–1208 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Xia, X. G. et al. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 10433–10438 (2001). Direct evidence of the involvement of the JNK/Jun pathway in MPTP-induced apoptotic cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saporito, M. S., Brown, E. M., Miller, M. S. & Carswell, S. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther. 288, 421–427 (1999).

    CAS  PubMed  Google Scholar 

  62. Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Lei, K. et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun N-terminal kinase. Mol. Cell Biol. 22, 4929–4942 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mochizuki, H. et al. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 10918–10923 (2001). Using viral vectors to deliver an Apaf1 inhibitor, this paper shows the instrumental role of the mitochondrial PCD pathway in MPTP-mediated neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eberhardt, O. et al. Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Neurosci. 20, 9126–9134 (2000). Evidence indicating that adenoviral gene transfer of XIAP, a protein caspase inhibitor, can prevent cell death of DA neurons induced by MPTP, but it does not protect against MPTP-induced reduction of striatal cathecolamine concentrations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bilsland, J. et al. Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons. J. Neurosci. 22, 2637–2649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raff, M. C., Whitmore, A. V. & Finn, J. T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, M. et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Med. 6, 797–801 (2000). Demonstration that inhibition of caspase activation by a second-generation tetracycline derivative delays disease progression and mortality in a transgenic mouse model of HD.

    Article  CAS  PubMed  Google Scholar 

  69. Du, Y. et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 14669–14674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, D. C. et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763–1771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 107–108 (1998).

    Article  Google Scholar 

  73. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Vila, M. et al. α-Synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74, 721–729 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Przedborski, S. et al. Oxidative post-translational modifications of α-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J. Neurochem. 76, 637–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Dauer, W. et al. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl Acad. Sci. USA 99, 14524–14529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. El-Agnaf, O. M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett. 440, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Hashimoto, M., Takeda, A., Hsu, L. J., Takenouchi, T. & Masliah, E. Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849–28852 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Kakimura, J. et al. Release and aggregation of cytochrome c and α-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole. Eur. J. Pharmacol. 417, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Riederer, P. et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515–520 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Nicole, A., Santiard-Baron, D. & Ceballos-Picot, I. Direct evidence for glutathione as mediator of apoptosis in neuronal cells. Biomed. Pharmacother. 52, 349–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Rowland, L. P. Merritt's textbook of neurology (ed. Rowland, L. P.) 742–749 (Lippincott, Williams & Wilkins, Philadelphia, 1995).

  83. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediated damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Nagai, M. et al. Rats expressing human cytosolic copper–zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J. Neurosci. 21, 9246–9254 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Subramaniam, J. R. et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nature Neurosci. 5, 301–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Brown, R. H. Jr. Superoxide dismutase in familial amyotrophic lateral sclerosis: models for gain of function. Curr. Opin. Neurobiol. 5, 841–846 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl Acad. Sci. USA 92, 3024–3028 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghadge, G. D. et al. Mutant superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J. Neurosci. 17, 8756–8766 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mena, M. A. et al. Effects of wild-type and mutated copper/zinc superoxide dismutase on neuronal survival and L-DOPA-induced toxicity in postnatal midbrain culture. J. Neurochem. 69, 21–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Kostic, V., Jackson-Lewis, V., De Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997). Demonstration that overexpression of Bcl2 mitigates neurodegeneration and prolongs survival in a transgenic mouse model of familial ALS.

    Article  CAS  PubMed  Google Scholar 

  94. Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339 (2000). Demonstration that the irreversible broad-caspase inhibitor zVAD-fmk attenuates mutant SOD1-mediated cell death in a transgenic mouse model of ALS, resulting in a delayed disease onset and mortality.

    Article  CAS  PubMed  Google Scholar 

  95. Guegan, C. & Przedborski, S. Programmed cell death in amyotrophic lateral sclerosis. J. Clin. Invest. 111, 153–161 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig deciphering selective motor neuron death in ALS. Nature Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  Google Scholar 

  97. Hirano, A. Aspects of the ultrastructure of amyotrophic lateral sclerosis. Adv. Neurol. 36, 75–88 (1982).

    CAS  PubMed  Google Scholar 

  98. Martin, L. J. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Vukosavic, S. et al. Delaying caspase activation by Bcl-2: a clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 20, 9119–9125 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pasinelli, P., Houseweart, M. K., Brown, R. H. Jr & Cleveland, D. W. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu, Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 13901–13906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dal Canto, M. C. & Gurney, M. E. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1279 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yoshiyama, Y., Yamada, T., Asanuma, K. & Asahi, T. Apoptosis related antigen, LeY and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol. (Berl.) 88, 207–211 (1994).

    Article  CAS  Google Scholar 

  103. Ekegren, T., Grundstrom, E., Lindholm, D. & Aquilonius, S. M. Upregulation of Bax protein and increased DNA degradation in ALS spinal cord motor neurons. Acta Neurol. Scand. 100, 317–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Migheli, A., Cavalla, P., Marino, S. & Schiffer, D. A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks. J. Neuropathol. Exp. Neurol. 53, 606–616 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Migheli, A. et al. Lack of apoptosis in mice with ALS. Nature Med. 5, 966–967 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. He, B. P. & Strong, M. J. Motor neuronal death in sporadic amyotrophic lateral sclerosis (ALS) is not apoptotic. A comparative study of ALS and chronic aluminium chloride neurotoxicity in New Zealand white rabbits. Neuropathol. Appl. Neurobiol. 26, 150–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Pedersen, W. A., Luo, H., Kruman, I., Kasarskis, E. & Mattson, M. P. The prostate apoptosis response-4 protein participates in motor neuron degeneration in amyotrophic lateral sclerosis. FASEB J. 14, 913–924 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Mu, X., He, J., Anderson, D. W., Trojanowski, J. Q. & Springer, J. E. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann. Neurol. 40, 379–386 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Vukosavic, S., Dubois-Dauphin, M., Romero, N. & Przedborski, S. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 73, 2460–2468 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Troost, D., Aten, J., Morsink, F. & De Jong, J. M. B. V. Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons. Bcl-2 expression is increased in unaffected post- central gyrus. Neuropathol. Appl. Neurobiol. 21, 498–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Gonzalez de Aguilar, J. L. et al. Alteration of the Bcl-x/Bax ratio in a transgenic mouse model of amyotrophic lateral sclerosis: evidence for the implication of the p53 signaling pathway. Neurobiol. Dis. 7, 406–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Guegan, C., Vila, M., Rosoklija, G., Hays, A. P. & Przedborski, S. Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J. Neurosci. 21, 6569–6576 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Martin, L. J. p53 is abnormally elevated and active in the CNS of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 7, 613–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Prudlo, J. et al. Motor neuron cell death in a mouse model of FALS is not mediated by the p53 cell survival regulator. Brain Res. 879, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Kuntz, C., Kinoshita, Y., Beal, M. F., Donehower, L. A. & Morrison, R. S. Absence of p53: no effect in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp. Neurol. 165, 184–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Guegan, C. et al. Instrumental activation of Bid by caspase-1 in a transgenic mouse model of ALS. Mol. Cell. Neurosci. 20, 553 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J. & Yuan, J. Inhibition of ICE slows ALS in mice. Nature 388, 31 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Zhu, S. et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417, 74–78 (2002). Demonstration that minocycline prevents mitochondrial release of cytochrome c , resulting in a delayed disease onset and extended survival of transgenic ALS mice.

    Article  CAS  PubMed  Google Scholar 

  119. Ishigaki, S. et al. X-Linked inhibitor of apoptosis protein is involved in mutant SOD1- mediated neuronal degeneration. J. Neurochem. 82, 576–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Nguyen, M. D., Julien, J. P. & Rivest, S. Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1β in neurodegeneration. Ann. Neurol. 50, 630–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Brandt, J. et al. Trinucleotide repeat length and clinical progression in Huntington's disease. Neurology 46, 527–531 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Thomas, L. B. et al. DNA end labeling (TUNEL) in Huntington's disease and other neuropathological conditions. Exp. Neurol. 133, 265–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Portera-Cailliau, C., Hedreen, J. C., Price, D. L. & Koliatsos, V. E. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Sanchez, I. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Andreassen, O. A. et al. Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-negative mutant. J. Neurochem. 75, 847–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Duan, W. et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl Acad. Sci. USA 100, 2911–2916 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Miyashita, T. et al. Expression of extended polyglutamine sequentially activates initiator and effector caspases. Biochem. Biophys. Res. Commun. 257, 724–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Rigamonti, D. et al. Huntingtin's neuroprotective activity occurs via inhibition of procaspase-9 processing. J. Biol. Chem. 276, 14545–14548 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Goldberg, Y. P. et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet. 13, 442–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Wellington, C. L. et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Wellington, C. L. et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275, 19831–19838 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Martindale, D. et al. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genet. 18, 150–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Kim, Y. J. et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl Acad. Sci. USA 98, 12784–12789 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mende-Mueller, L. M., Toneff, T., Hwang, S. R., Chesselet, M. F. & Hook, V. Y. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. J. Neurosci. 21, 1830–1837 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wellington, C. L. et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci. 22, 7862–7872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gervais, F. G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biol. 4, 95–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Loo, D. T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci. USA 90, 7951–7955 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Su, J. H., Anderson, A. J., Cummings, B. J. & Cotman, C. W. Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport 5, 2529–2533 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Stadelmann, C. et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death. Am. J. Pathol. 155, 1459–1466 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Selznick, L. A. et al. In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 1020–1026 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Rohn, T. T., Head, E., Nesse, W. H., Cotman, C. W. & Cribbs, D. H. Activation of caspase-8 in the Alzheimer's disease brain. Neurobiol. Dis. 8, 1006–1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Rohn, T. T. et al. Caspase-9 Activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol. Dis. 11, 341–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Ivins, K. J., Thornton, P. L., Rohn, T. T. & Cotman, C. W. Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol. Dis. 6, 440–449 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Giovanni, A. et al. E2F1 mediates death of β-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J. Biol. Chem. 275, 11553–11560 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by β-amyloid. J. Neurosci. 20, 1386–1392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gervais, F. G. et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97, 395–406 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Lu, D. C. et al. A second cytotoxic proteolytic peptide derived from amyloid-β protein precursor. Nature Med. 6, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Langston, J. W., Ballard, P. & Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  155. Nicklas, W. J., Yougster, S. K., Kindt, M. V. & Heikkila, R. E. MPTP, MPP+ and mitochondrial function. Life Sci. 40, 721–729 (1987).

    Article  CAS  PubMed  Google Scholar 

  156. Gluck, M. R., Youngster, S. K., Ramsay, R. R., Singer, T. P. & Nicklas, W. J. Studies on the characterization of the inhibitory mechanism of 4'-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J. Neurochem. 63, 655–661 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  158. Deng, H. -X. et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  PubMed  Google Scholar 

  159. Chiu, A. Y. et al. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 6, 349–362 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Dal Canto, M. C. & Gurney, M. E. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676, 25–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  161. Almer, G., Vukosavic, S., Romero, N. & Przedborski, S. Inducible nitric oxide synthase upregulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 72, 2415–2425 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Tu, P. H. et al. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc. Natl Acad. Sci. USA 93, 3155–3160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Teismann, P et al. Cyclooxygenase-2 is instrumental in Parkinson disease neurodegeneration. Proc. Natl Acad. Sci. USA (in the press).

Download references

Acknowledgements

We wish to acknowledge the support from the NIH/NINDS, the US Department of Defense, the Lowenstein Foundation, the Lillian Goldman Charitable Trust, the Parkinson's Disease Foundation, the American Parkinson's Disease Association, the Muscular Dystrophy Association, the ALS Association and Project-ALS. We also thank J.P. Vonsattel for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Vila.

Related links

Related links

DATABASES

LocusLink

AIF

Apaf1

Bak

Bax

Bcl

Bcl-xL

Bid

Bim

caspase 1

caspase 3

caspase 8

caspase 9

caspase 12

FADD

Fas

Hip1

Hippi

huntingtin

JNK

JNK-interacting protein 1

p53

Par-4

Smac/Diablo

SOD1

α-synuclein

TNFR1

TNFα

TRADD

XIAP

OMIM

Alzheimer disease

amyotrophic lateral sclerosis

Huntington disease

Parkinson disease

Glossary

TUNEL TECHNIQUE

This technique enables the visualization of cells undergoing apoptosis by labelling the broken ends of the double-stranded DNA with biotin-conjugated dUTP, using the enzyme terminal deoxynucleotidyl transferase.

ZYMOGENS

The inactive precursors of enzymes — often transformed into the active enzyme by partial proteolysis.

DOMINANT NEGATIVE

A mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

GAIN-OF-FUNCTION

A mutation that confers either a previously inexistent activity to the affected protein or increases a pre-existing funtion.

PARAPTOSIS

A form of programmed cell death that is related to apoptosis. It is transcription dependent and features swelling of the endoplasmic reticulum and mitochondria. However, it does not depend on caspase activation, except for caspase 9, lacks internucleosomal DNA cleavage, and does not show other morphological hallmarks of apoptosis such as nuclear fragmentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vila, M., Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4, 365–375 (2003). https://doi.org/10.1038/nrn1100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing