Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

Seeing is believing: the impact of structural genomics on antimicrobial drug discovery

Abstract

Over the past decade, the availability of complete microbial genome sequences has led to changes in the strategies that are used to search for novel anti-infectives. However, despite the identification of many new potential drug targets, novel antimicrobial agents have been slow to emerge from these efforts. In part, this reflects the long discovery and development times that are needed to bring new drugs to market and the bottlenecks at the stages of identifying good lead compounds and optimizing these leads into drug candidates. Structural genomics will hopefully provide opportunities to overcome these bottlenecks and populate the antimicrobial pipeline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From clone to high-resolution protein structure.
Figure 2: Structure-guided antimicrobial drug discovery.
Figure 3: Protein–ligand co-structures.

Similar content being viewed by others

References

  1. Wilson, J. C. & von Itzstein, M. Recent strategies in the search for new anti-influenza therapies. Curr. Drug Targets 4, 389–408 (2003).

    Article  CAS  Google Scholar 

  2. Hardy, L. W. & Maliyakil, A. The impact of structure-guided drug design on clinical agents. Curr. Drug Discov. [online] <http://www.currentdrugdiscovery.com/pdf/2003/515563.pdf> (2003).

  3. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  4. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  5. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  6. Murakami, K. S., Masuda, S. & Darst, S. A. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296, 1280–1284 (2002).

    Article  CAS  Google Scholar 

  7. Lim, D. & Strynadka, N. C. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nature Struct. Biol. 9, 870–876 (2002).

    CAS  PubMed  Google Scholar 

  8. Bellon, S. et al. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob. Agents Chemother. 48, 1856–1864 (2004).

    Article  CAS  Google Scholar 

  9. Tsai, F. T. et al. The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins 28, 41–52 (1997).

    Article  CAS  Google Scholar 

  10. Bower, J. et al. Structure-based design of agents targeting the bacterial ribosome. Bioorg. Med. Chem. Lett. 13, 2455–2458 (2003).

    Article  CAS  Google Scholar 

  11. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  Google Scholar 

  12. Zalacain, M. et al. A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J. Mol. Microbiol. Biotechnol. 6, 109–126 (2004).

    Article  Google Scholar 

  13. Akerley, B. J. et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl Acad. Sci. USA 99, 966–971 (2002).

    Article  CAS  Google Scholar 

  14. Jacobs, M. A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 100, 14339–14344 (2003).

    Article  CAS  Google Scholar 

  15. Gerdes, S. Y. et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

    Article  CAS  Google Scholar 

  16. Forsyth, R. A. et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400 (2002).

    Article  CAS  Google Scholar 

  17. Sittampalam, G. S., Kahl, S. D. & Janzen, W. P. High-throughput screening: advances in assay technologies. Curr. Opin. Chem. Biol. 1, 384–391 (1997).

    Article  CAS  Google Scholar 

  18. Silverman, L., Campbell, R. & Broach, J. R. New assay technologies for high–throughput screening. Curr. Opin. Chem. Biol. 2, 397–403 (1998).

    Article  CAS  Google Scholar 

  19. Zhang, L. et al. Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene 255, 297–305 (2000).

    Article  CAS  Google Scholar 

  20. Payne, D. et al. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46, 3118–3124 (2002).

    Article  CAS  Google Scholar 

  21. DeVito, J. A. et al. An array of target-specific screening strains for antibacterial discovery. Nature Biotechnol. 20, 478–483 (2002).

    Article  CAS  Google Scholar 

  22. Bostian, K. A. & Schmid, M. B. in Antibacterial Therapy: Achievements, Problems and Future Perspectives (eds Busse, W. D., Zeiler, H. J. & Labischinski, H.) 61–68 (Springer Verlag, Berlin, 1997).

    Book  Google Scholar 

  23. Ji, Y. et al. Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS Microbiol. Lett. 231, 177–184 (2004).

    Article  CAS  Google Scholar 

  24. Hou, J., Sims, G. E., Zhang, C. & Kim, S. H. A global representation of the protein fold space. Proc. Natl Acad. Sci. USA 100, 2386–2390 (2003).

    Article  CAS  Google Scholar 

  25. Service, R. F. Structural genomics. Tapping DNA for structures produces a trickle. Science 298, 948–950 (2002).

    Article  CAS  Google Scholar 

  26. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  27. Lesley, S. A. et al. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl Acad. Sci. USA 99, 11664–11669 (2002).

    Article  CAS  Google Scholar 

  28. Christendat, D. et al. Structural proteomics of an archaeon. Nature Struct. Biol. 7, 903–909 (2000).

    Article  CAS  Google Scholar 

  29. Goulding, C. W. & Perry, L. J. Protein production in Escherichia coli for structural studies by X–ray crystallography. J. Struct. Biol. 142, 133–143 (2003).

    Article  CAS  Google Scholar 

  30. Vincentelli, R. et al. Medium-scale structural genomics: strategies for protein expression and crystallization. Acc. Chem. Res. 36, 165–172 (2003).

    Article  CAS  Google Scholar 

  31. Gerstein, M. Patterns of protein-fold usage in eight microbial genomes: A comprehensive structural census. Proteins 33, 518–534 (1998).

    Article  CAS  Google Scholar 

  32. Derewenda, Z. S. Rational protein crystallization by mutational surface engineering. Structure 12, 529–535 (2004).

    Article  CAS  Google Scholar 

  33. Goulding, C. W. et al. Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA. Biophys. Chem. 105, 361–370 (2003).

    Article  CAS  Google Scholar 

  34. Gerstein, M., Edwards, A., Arrowsmith, C. H. & Montelione, G. T. Structural genomics: current progress. Science 299, 1663 (2003).

    Article  CAS  Google Scholar 

  35. Westbrook, J., Feng, Z., Chen, L., Yang, H. & Berman, H. M. The protein data bank and structural genomics. Nucleic Acids Res. 31, 489–491 (2003).

    Article  CAS  Google Scholar 

  36. Makrides, S. C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 60, 512–538 (1996).

    CAS  PubMed  Google Scholar 

  37. Jancarik, J. & Kim, S. -H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  38. Kimber, M. S. et al. Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 51, 562–568 (2003).

    Article  CAS  Google Scholar 

  39. Goh, C. S. et al. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J. Mol. Biol. 336, 115–130 (2004).

    Article  CAS  Google Scholar 

  40. Hosfield, D. et al. A fully integrated protein crystallization platform for small molecule drug discovery. J. Struct. Biol. 142, 207–217 (2003).

    Article  CAS  Google Scholar 

  41. Chayen, N. E. Protein crystallization for genomics: throughput versus output. J. Struct. Funct. Genomics 4, 115–120 (2003).

    Article  CAS  Google Scholar 

  42. Rupp, B. High-throughput crystallography at an affordable cost: the TB structural genomics consortium crystallization facility. Acc. Chem. Res. 36, 173–181 (2003).

    Article  CAS  Google Scholar 

  43. Moult, J., Fidelis, K., Zemla, A. & Hubbard, T. Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins 53, S334–S339 (2003).

    Article  Google Scholar 

  44. Venclovas, C., Zemla, A., Fidelis, K. & Moult, J. Assessment of progress over the CASP experiments. Proteins 53, S585–S595 (2003).

    Article  Google Scholar 

  45. DeWeese-Scott, C. et al. Molecular modeling of protein function regions. Proteins 55, 942–961 (2004).

    Article  CAS  Google Scholar 

  46. Daines, R. A. et al. First X-ray co-crystal structure of a bacterial FabH condensing enzyme and a small molecule inhibitor achieved using rational design and homology modeling. J. Med. Chem. 46, 5–8 (2003).

    Article  CAS  Google Scholar 

  47. Sharff, A. & Jhoti, H. High-throughput crystallography to enhance drug discovery. Curr Opin. Chem. Biol. 7, 340–345 (2003).

    Article  CAS  Google Scholar 

  48. Whittington, D. A., Rusche, K. M., Shin, H., Fierke, C. A. & Christianson, D. W. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc. Natl Acad. Sci. USA 100, 8146–8150 (2003).

    Article  CAS  Google Scholar 

  49. Burley, S. K. The FAST and the curious: fragment-based lead discovery and optimization via high-throughput X-ray crystallography. Modern Drug Discov. 7, 53–55 (2004).

    Google Scholar 

  50. Hajduk, P. J. et al. A strategy for high-throughput assay development using leads derived from nuclear magnetic resonance-based screening. J. Biomol. Screen 7, 429–432 (2002).

    Article  CAS  Google Scholar 

  51. Erlanson, D. A., McDowell, R. S. & O'Brien, T. Fragment-based drug discovery. J. Med. Chem. 47, 3463–3482 (2004).

    Article  CAS  Google Scholar 

  52. Nienaber, V. L. et al. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nature Biotechnol. 18, 1105–1108 (2000).

    Article  CAS  Google Scholar 

  53. Sanders, W. J. et al. Discovery of potent inhibitors of dihydroneopterin aldolase using CrystaLEAD high-throughput X-ray crystallographic screening and structure-directed lead optimization. J Med Chem. 47, 1709–1718 (2004).

    Article  CAS  Google Scholar 

  54. Kline, T. et al. Potent, novel in vitro inhibitors of the Pseudomonas aeruginosa deacetylase LpxC. J. Med. Chem. 45, 3112–3129 (2002).

    Article  CAS  Google Scholar 

  55. Onishi, H. R. et al. Antibacterial agents that inhibit lipid A biosynthesis. Science 274, 980–982 (1996).

    Article  CAS  Google Scholar 

  56. Chen, M. H. et al. Carbohydroxamide-oxalidonones: antibacterial agents that target lipid A biosynthesis. Bioorg. Med. Chem. Lett. 9, 313–318 (1999).

    Article  CAS  Google Scholar 

  57. Coggins, B. E., Li, X., Hindsgaul, O., Raetz, C. R. & Zhou, P. Assignment of the 1H, 13C and 15N resonances of the LpxC deacetylase from Aquifex aeolicus in complex with the substrate-analog inhibitor TU-514. J. Biomol NMR 28, 201–202 (2004).

    Article  CAS  Google Scholar 

  58. Coggins, B. E. et al. Structure of the LpxC deacetylase with a bound substrate-analog inhibitor. Nature Struct. Biol. 10, 645–651 (2003).

    Article  CAS  Google Scholar 

  59. Qiu, X. et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 10, 2008–2016 (2001).

    Article  CAS  Google Scholar 

  60. Payne, D. J. et al. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46, 3118–3124 (2002).

    Article  CAS  Google Scholar 

  61. Chen, L. et al. TargetDB: a target registration database for structural genomics projects. Bioinformatics (in the press).

  62. Balzarini, J. Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr. Top. Med. Chem. 4, 921–944 (2004).

    Article  CAS  Google Scholar 

  63. Nezami, A. & Freire, E. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors. Int. J. Parasitol. 32, 1669–1676 (2002).

    Article  CAS  Google Scholar 

  64. Stammers, D. K. et al. 2.0 Å X-ray structure of the ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue. FEBS Lett. 456, 49–53 (1999).

    Article  CAS  Google Scholar 

  65. Smith, C. V. & Sacchettini, J. C. Mycobacterium tuberculosis: a model system for structural genomics. Curr. Opin. Struct. Biol. 13, 658–664 (2003).

    Article  CAS  Google Scholar 

  66. Abergel, C. et al. Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets. J. Struct. Funct. Genomics 4, 141–157 (2003).

    Article  CAS  Google Scholar 

  67. Wang, R., Fang, X., Lu, Y. & Wang, S. The PDBbind database: collection of binding affinities for protein–ligand complexes with known three-dimensional structures. J. Med. Chem. 47, 2977–2980 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks former colleagues at Affinium Pharmaceuticals for the opportunity to participate in building a structural genomics pipeline and to understand the value that structural biology can bring to drug discovery when it can keep pace with the medicinal chemistry cycle. In addition, J. Berman, D. Biek, A. Dharamsi, N. Kaplan and R. Lam provided excellent comments on drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

I am a former employee of Affinium Pharmaceuticals, a structure-guided drug discovery company.

Related links

Related links

DATABASES

Entrez

Escherichia coli

Haemophilus influenzae

Lon

Mycobacterium tuberculosis

OmpT

Staphylococcus aureus

Streptococcus pneumoniae

Protein Data Bank

DNA gyrase

FabH–acetyl-coA complex

LpxC

penicillin-binding protein

30S ribosomal subunit

50S ribosomal subunit

RNA polymerase

FURTHER INFORMATION

Completed microbial genomes

PEC database

PEDANT database

TargetDB database

The Institute for Genomic Research (TIGR)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M. Seeing is believing: the impact of structural genomics on antimicrobial drug discovery. Nat Rev Microbiol 2, 739–746 (2004). https://doi.org/10.1038/nrmicro978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing