Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death in planktonic, photosynthetic microorganisms

Key Points

  • Phytoplankton have pivotal roles in regulating aquatic food webs, biogeochemical cycles, and the Earth's climate. Even though steady-state maintenance of a high ratio of production/biomass in the ocean implies that, on average, phytoplankton grow, die and are replaced once per week, there has been a misconception among oceanographers that they are immortal unless killed or eaten by predators.

  • However, over the past decade it has become increasingly apparent that phytoplankton are not immortal. Upon encountering adverse environmental conditions, they often die spontaneously, with cell death by lysis in field populations exceeding 50% of phytoplankton growth.

  • Here, we discuss exogenous and endogenous mechanisms of phytoplankton death, including viral infection and programmed cell death (PCD). We specifically examine the experimental evidence for PCD in phytoplankton and exploring its evolutionary development and ecological impact.

  • Our analysis indicates that prokaryotic phytoplankton, as well as derived, independently evolving eukaryotic lineages, not only possess similar PCD programme that involve caspase activity, but they possess a core set of proteins that are orthologues of metazoan caspases.

  • Although the discovery of eukaryotic cell-death domains, such as genes that encode metacaspases, in the genomes of the α-proteobacteria suggests that they have a bacterial origin, phytoplankton provide a unique and intriguing paradox that does not fit the mitochondrial inheritance paradigm of cell-death genes. Given the cyanobacterial origin of plastids, phytoplankton span the photosynthetic bacteria–eukaryote transition independent of mitochondria.

  • Preservation of cell death-related genes in phytoplankton would seem to provide a mechanism for negative selection pressure, yet their retention and maintenance suggests some sort of ancient, selective advantage. We speculate as to 'why' phytoplankton activate a cell-death programme and propose several testable hypotheses.

Abstract

Phytoplankton evolved in the Archaean oceans more than 2.8 billion years ago and are of crucial importance in regulating aquatic food webs, biogeochemical cycles and the Earth's climate. Until recently, phytoplankton were considered immortal unless killed or eaten by predators. However, over the past decade, it has become clear that these organisms can either be infected by viruses or undergo programmed cell death (PCD) in response to environmental stress, resulting in mortality. Here, we discuss exogenous and endogenous mechanisms of phytoplankton death, specifically examining the experimental evidence for PCD in phytoplankton and exploring its evolutionary development and ecological impact. We consider phytoplankton PCD as an autocatalytic cell-suicide mechanism in which an endogenous biochemical pathway leads to cellular demise with apoptotic morphological changes. Phytoplankton have a core set of proteins that are orthologues of metazoan caspases. It seems that PCD in prokaryotic phytoplankton, and in independently evolving eukaryotic lineages, has deeply rooted origins that were appropriated and transferred to multicellular plants and animals in the past 700 million years of the Earth's history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prolonged darkness induces PCD in the unicellular, eukaryotic phytoplankton, Dunaliella tertiolecta.
Figure 2: Activation of PCD in ageing cells of the filamentous, prokaryotic phytoplankton Trichodesmium sp. IMS101.
Figure 3: Phylogenetic analysis of phytoplankton metacaspases in the larger context of the caspase-family of proteases.
Figure 4: Placement of phytoplankton PCD into an evolutionary context.
Figure 5: Phylogenetic tree of cyanobacterial 16S rRNA gene sequences illustrating a potential scheme of metacaspase inheritance.
Figure 6: A schematic of ecosystem pathways in the sea illustrating the consequences of phytoplankton PCD or viral infection.

Similar content being viewed by others

References

  1. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  2. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Knoll, A. H. Life on a Young planet: The First Three Billion Years of Evolution on Earth (Princeton Univ. Press, Princeton, 2003).

    Google Scholar 

  5. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 237–240 (1998).

  6. van Boekel, W. H. M., Hansen, F. C., Riegman, R. & Bak, R. P. M. Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial foodweb. Mar. Ecol. Prog. Ser. 81, 269–276 (1992).

    Article  Google Scholar 

  7. August', S., Satta, M. P., Mura, M. P. & Benavent, E. Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol. Oceanogr. 43, 1836–1849 (1998).

    Article  Google Scholar 

  8. Brussaard, C. P. D. et al. Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar. Ecol. Prog. Ser. 123, 259–271 (1995).

    Article  Google Scholar 

  9. Cole, J. J., Findlay, S. & Pace, M. L. Bacterioplankton production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988). The first cross-system analysis illustrating that, on average, 50% of global phytoplankton productivity is coupled to the microbial loop.

    Article  Google Scholar 

  10. Manton, I. & Leadbeater, B. S. C. Fine structural observations on six species of Chrysochromulina from wild Danish marine nanoplankton, including a description of C. campanulifera sp. nov. and a preliminary summary of the nanoplankton as a whole. K. Dan. Vidensk. Selsk. Biol. Skr. 20, 1–26 (1974).

    Google Scholar 

  11. Mayer, J. A. & Taylor, F. J. R. A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281, 299–301 (1979).

    Article  Google Scholar 

  12. Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990). The first study to demonstrate the high abundance of viruses in the marine environment and their effect on driving mortality in natural systems.

    Article  Google Scholar 

  13. Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999). A concise overview detailing the importance of viruses to the regulation of marine microbial ecology and biogeochemistry in the upper ocean.

    Article  CAS  PubMed  Google Scholar 

  15. Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microb. Mol. Biol. Rev. 64, 69–114 (2000).

    Article  CAS  Google Scholar 

  16. Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae)and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    Article  Google Scholar 

  17. Hennes, K. P., Suttle, C. A. & Chan, A. M. Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl. Environ. Microbiol. 61, 3623–3627 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suttle, C. A. & Chan, M. Marine cyanophage infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity, and growth characteristics. Mar. Ecol. Prog. Ser. 92, 99–109 (1993).

    Article  Google Scholar 

  19. Larsen, A. et al. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221, 47–57 (2001).

    Article  Google Scholar 

  20. Suttle, C. A., Chan, A. M. & Cottrell, M. T. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl. Environ. Microbiol. 57, 721–726 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suttle, C. A., Chan, A. M. & Cottrell, M. T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347, 467–469 (1990).

    Article  Google Scholar 

  22. Hewson, I., O'Neil, J. M., Heil, C. A., Bratbak, G. & Dennison, W. C. Effects of concentrated viral communities on photosynthesis and community composition of co-occurring benthic microalgae and phytoplankton. Aquat. Microb. Ecol. 25, 1–10 (2001).

    Article  Google Scholar 

  23. Wilson, W., Joint, I. R., Carr, N. G. & Mann, N. H. Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803. Appl. Environ. Microbiol. 59, 3736–3743 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suttle, C. A. in The Ecology of Cyanobacteria: Their Diversity in Time and Space (eds Whitton, B. A. & Potts, M.) (Kluwer Academic, Boston, 2000).

    Google Scholar 

  25. Lu, J., Chen, F. & Hodson, R. E. Distribution, isolation, host specificity and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl. Environ. Microbiol. 67, 3285–3290 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, F. & Suttle, C. A. Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219, 170–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. VanEtten, J. L., Graves, M. V., Müller, D. G., Boland, W. & Delaroque, N. Phycodnaviridae large DNA algal viruses. Arch. Virol. 147, 1479–1516 (2002). A detailed description of the specialized group of viruses that infect marine algae.

    Article  CAS  Google Scholar 

  28. Schroeder, D. C., Oke, J., Malin, G. & Wilson, W. H. Coccolithovirus (Phycodnaviridae): characterization of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch. Virol. 147, 1685–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Suttle, C. A. in Viral Ecology (ed. Hurst, C. J.) 247–296 (Academic Press, San Diego, 2000).

    Book  Google Scholar 

  30. Bratbak, G., Wilson, W. & Heldal, M. Viral control of Emiliania huxleyi blooms? J. Mar. Syst. 9, 75–81 (1996).

    Article  Google Scholar 

  31. Jacquet, S. et al. Flow cytometric analysis of an Emiliania huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 27, 111–124 (2002).

    Article  Google Scholar 

  32. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide ranging implications. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aravind, L., Dixit, V. M. & Koonin, E. V. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47–53 (1999). Details the various protein domains that comprise the apoptotic machinery and their evolutionary relationships in different organisms.

    Article  CAS  PubMed  Google Scholar 

  34. Walker, N. I., Harmon, B. V., Gobé, G. C. & Kerr, J. F. R. in Kinetics and Patterns of Necrosis (ed. Jasmin, G.) 18–54 (Karger, Basel, 1988).

    Google Scholar 

  35. Skulachev, V. P. The programmed cell death phenomena, aging, and the Samurai law of biology. Exp. Gerontol. 36, 995–1024 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Leist, M. & Nicotera, P. The shape of cell death. Biochem. Biophys. Res. Comm. 236, 1–9 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Bayles, K. W. Are the molecular strategies that control apoptosis conserved in bacteria? Trends Microbiol. 11, 306–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503–514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rice, K. C. & Bayles, K. W. Death's toolbox: examining the molecular components of bacterial programmed cell death. Mol. Microbiol. 50, 729–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yarmolinsky, M. B. Programmed cell death in bacterial populations. Science 267, 836–837 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Fröhlich, K. -U. & Madeo, F. Apoptosis in yeast: a monocellular organism exhibits altruistic behaviour. FEBS Letts 473, 6–9 (2000).

    Article  Google Scholar 

  42. Ameisen, J. C. et al. Apoptosis in a unicellular eukaryote (Trypanozoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Diff. 2, 285–300 (1995). An enlightening article that expands our thinking of how and when the programmed cell-death machinery might have evolved.

    CAS  Google Scholar 

  43. Arnoult, D. et al. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ. 9, 65–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, N. et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 9, 53–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ameisen, J. C. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ. 9, 367–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Brussaard, C. P. D., Noordeloos, A. A. M. & Riegman, R. Autolysis kinetics of the marine diatom Ditylum brightwellii (Bacillariophyceae) under nitrogen and phosphorus limitation and starvation. J. Phycol. 33, 980–987 (1997).

    Article  Google Scholar 

  47. Berges, J. A. & Falkowski, P. G. Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol. Oceanogr. 43, 129–135 (1998). The first demonstration of altered proteolytic profiles in marine phytoplankton during environmental stress, indicating the activation of cryptic proteases.

    Article  CAS  Google Scholar 

  48. Vardi, A. et al. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9, 1061–1064 (1999). The first systematic study detailing a programmed cell-death response in a phytoplankton, including the role of cysteine proteases.

    Article  CAS  PubMed  Google Scholar 

  49. Ning, S. -B., Guo, H. -L., Wang, L. & Song, Y. -C. Salt stress induces programmed cell death in prokaryotic organism Anabaena. J. Appl. Microbiol. 93, 15–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Segovia, M., Haramaty, L., Berges, J. A. & Falkowski, P. G. Cell death in the unicellular chlorophyte Dunaliella tertiolecta: a hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol. 132, 99–105 (2003). The first study to hint at the presence of caspase-like proteases in a unicellular phytoplankton and their role in autocatalytic cell death

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berman-Frank, I., Bidle, K., Haramaty, L. & Falkowski, P. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004). Demonstrates a role for caspase-like proteases in an evolutionary ancient bacterial representative of phytoplankton, indicating early evolution of these proteases.

    Article  Google Scholar 

  52. Kolber, Z. S., Prasil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1367, 88–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260 (2001).

    Article  CAS  Google Scholar 

  54. Behrenfeld, M. J. & Kolber, Z. S. Widespread iron limitation of phytoplankton in the south Pacific Ocean. Science 283, 840–843 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Kolber, Z. S. et al. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371, 145–149 (1994).

    Article  CAS  Google Scholar 

  56. Sosik, H. M. & Olson, R. J. Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep Sea Res. Part I Oceanogr. Res. Pap. 49, 1195–1216 (2002).

    Article  CAS  Google Scholar 

  57. Walsby, A. F. The properties and buoyancy providing role of gas vacuoles in Trichodesmium Ehrenberg. Br. Phycological J. 13, 103–116 (1978).

    Article  Google Scholar 

  58. Chandra, J., Samali, A. & Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. del Pozo, O. & Lam, E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8, 1129–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Korthout, H. A. A. J., Berecki, G., Bruin, W., van Duijn, B. & Wang, M. The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett. 475, 139–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Mlejnek, P. & Procházka, S. Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta 215, 158–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Madeo, F. et al. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911–917 (2002). The first study to assign caspase activity to metacaspases and demonstrate their role in regulating death.

    Article  CAS  PubMed  Google Scholar 

  63. Szallies, A., Kubata, B. K. & Duszenko, M. A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett. 517, 144–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Baldauf, S. L. The deep roots of eukaryotes. Science 300, 1703–1706 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT Lymphoma. Mol. Cell 6, 961–967 (2000). Identifies two ancient families of caspase orthologues, many of which are in unicellular organisms.

    CAS  PubMed  Google Scholar 

  66. Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Wahlund, T. M. et al. Analysis of expressed sequence tags from calcifying cells of a marine coccolithophorid (Emiliania huxleyi). Mar. Biotechnol. 13 May 2004 (doi: 10.1007/s10126-003-0035-3).

  68. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  PubMed  Google Scholar 

  69. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 555–557 (1999).

    Article  CAS  Google Scholar 

  70. Knoll, A. The geological consequences of evolution. Geobiology 1, 3–15 (2003).

    Article  CAS  Google Scholar 

  71. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet. 5, 123–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Delwiche, C. F., Kuhsel, M. & Palmer, J. D. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol. Phylogenet. Evol. 4, 110–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Javaux, E., Knoll, A. H. & Walter, M. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).

    Article  Google Scholar 

  76. Delwiche, C. F. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 154, S164–S177 (1999). A thorough and very readable description of phytoplankton evolution.

    Article  CAS  PubMed  Google Scholar 

  77. Lipps, J. H. Fossil Protists (Blackwell, Oxford, 1993).

    Google Scholar 

  78. Koonin, E. V. & Aravind, L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ. 9, 394–404 (2002). A study that finds a wide variety of apoptotic death domains in the genomes of specific bacterial representatives and convincingly outlines their path to eukaryotic apoptosis via the mitochondria.

    Article  CAS  PubMed  Google Scholar 

  79. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Holland, H. D. Evidence for life on Earth more than 3850 million years ago. Science 275, 38–39 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Zehr, J. P., Mellon, M. T. & Hiorns, W. D. Phylogeny of cyanobacterial nifH genes: Evolutionary implications and potential applications to natural assemblages. Microbiology 143, 1443–1450 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Hills, S. J. & H. R. Thierstein . Plio-Pleistocene calcareous plankton biochronology. Mar. Micropaleontol. 14, 67–96 (1989).

    Article  Google Scholar 

  83. Sáez, A. G., Probert, I., Young, J. R. & Medlin, L. K. in Coccolithophores — From Molecular Processes to Global Impact. (eds Thierstein, H. R. & Young, J. R.) (Springer, Berlin, in the press).

  84. Sánchez Puerta, M. V., Bachvaroff, T. R. & Delwiche, C. F. The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts. DNA Res. 11, 1–10 (2004).

    Article  PubMed  Google Scholar 

  85. Hayashi-Ishimaru, Y., Ehara, M., Inagaki, Y. & Ohama, T. A deviant mitochondrial genetic code in prymesiophytes (yellow algae): UGA codon for tryptophan. Curr. Genet. 32, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Inagaki, Y., Ehara, M., Watanabe, K. I., Hayashi-Ishimaru, Y. & Ohama, T. Directionally evolving genetic code: the UGA codon from stop to tryptophan in mitochondria. J. Mol. Evol. 47, 378–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Aizenman, E., Engelberg-Kulka, H. & Glaser, G. An Escherichia coli chromosomal 'addition module' regulated by 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl Acad. Sci. USA 93 6059–6063 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. Whole-genome analysis of photosynthetic prokaryotes. Science 298, 1616–1620 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Blankenship, R. E. & Hartman, H. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Barber, J. (ed.) The Photosystems: Structure, Function and Molecular Biology (Elsevier, New York, 1992).

    Google Scholar 

  91. Taylor, F. Symbionticism revisited: a discussion of the evolutionary impact of intracellular symbioses. Proc. R. Soc. London 240, 267–289 (1979).

    Google Scholar 

  92. Taylor, F. An overview of the status of evolutionary cell symbiosis theories. Ann. N. Y. Acad. Sci. 503, 1–16 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Esser, C. et al. A genome phylogeny for mitochondria among α-Proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21 May 2004 (doi: 10. 1093/molbev/msh160).

  94. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).

    Article  CAS  Google Scholar 

  98. Kirchman, D. L. Phytoplankton death in the sea. Nature 398, 293–294 (1999).

    Article  CAS  Google Scholar 

  99. Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by natural marine bacterial assemblages. Nature 397, 508–512 (1999).

    Article  CAS  Google Scholar 

  100. Hamilton, W. D. The genetical evolution of social behavior. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  101. Bassler, B. L. Small talk. Cell-to-cell communication in bacteria. Cell 109, 421–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Georgiou, T. et al. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc. Natl Acad. Sci. USA 95, 2891–2895 (1998). Demonstration of a viral-exclusion strategy in a bacterium on sensing infection

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Teodoro, J. G. & Branton, P. E. Regulation of apoptosis by viral gene products. J. Virol. 71, 1739–1746 (1997). A detailed analysis of how viral infection and the subsequent synthesis of encoded gene products regulate the apoptotic response in animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, C., Xu, H. Y. & Liu, D. X. Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J. Virol. 75, 6402–6409 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nava, V. E. et al. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J. Virol. 72, 452–459 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lawrence, J. E., Chan, A. M. & Suttle, C. A. A novel virus (HaNIV) causes lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae). J. Phycol. 37, 216–222 (2001).

    Article  Google Scholar 

  107. Villarreal, L. P. Persisting viruses could play a role in driving host evolution. ASM News 67, 501–507 (2001).

    Google Scholar 

  108. DeFilippis, V. R. & Villarreal, L. P. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J. Virol. 74, 7079–7084 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Espinosa, A. & Villarreal, L. P. T-Ag inhibits implantation of EC-derived embryoid bodies. Virus Genes 20, 195–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Villarreal, L. P. On viruses, sex and motherhood. J. Virol. 71, 859–865 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. McDaniel, L., Griffin, D. W., Crespo-Gomez, J., McLaughlin, M. R. & Paul, J. H. Evaluation of marine bacterial lysogens for development of a marine prophage induction assay. Mar. Biotechnol. 3, 528–535 (2001).

    Article  CAS  Google Scholar 

  112. Ohki, K. & Fujita, Y. Occurence of a temperate cyanophage lysogenizing the marine cyanophyte Phormidium persicinum. J. Phycol. 32, 365–370 (1996).

    Article  Google Scholar 

  113. Ohki, K. A possible role of temperate phage in the regulation of Trichodesmium biomass. Bulletin de l'institute Oceanographique, Monaco 19, 287–291 (1999).

    Google Scholar 

  114. McDaniel, L., Houchin, L. A., Williamson, S. J. & Paul, J. H. Lysogeny in marine Synechococcus. Nature 415, 496 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Ortmann, A. C., Lawrence, J. E. & Suttle, C. A. Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp. Microb. Ecol. 43, 225–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Mitsui, A. et al. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323, 720–722 (1986).

    Article  CAS  Google Scholar 

  117. Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294, 1534–1537 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Schopf, J. W. in The Ecology of Cyanobacteria (eds Witton, B. A. & Potts, M.) 13–35 (Kluwer, The Netherlands, 2000).

    Google Scholar 

  119. Berman-Frank, I., Lundgren, P. & Falkowski, P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Microbiol. 154, 157–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Adams, D. G. & Duggan, P. S. Heterocyst and akinete differentiation in cyanobacteria. New Phytol. 144, 3–33 (1999).

    Article  Google Scholar 

  121. Meeks, J. C., Campbell, E. L., Summers, M. L. & Wong, F. C. Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch. Microbiol. 178, 395–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Billard, C. in The Haptophyte Algae (ed. Leadbeater, B. S. C.) 167–186 (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  123. Falkowski, P. G. & de Vargas, C. Shotgun sequencing from the sea: a blast from the past? Science 304, 58–60 (2004).

    Article  PubMed  Google Scholar 

  124. Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279–1284 (2001). A demonstration of the increased specialization of the cell-death machinery in animals, especially in its regulation.

    Article  CAS  PubMed  Google Scholar 

  125. Longhurst, A. R. & Harrison, W. G. The biological pump: profiles of plankton production and consumption in the upper ocean. Progr. Oceanogr. 22, 47–123 (1989).

    Article  Google Scholar 

  126. Hoppe, H. G. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11, 299–308 (1983).

    Article  CAS  Google Scholar 

  127. Falkowski, P. G. The ocean's invisible forest. Sci. Am. 287, 54–61 (2002).

    Article  PubMed  Google Scholar 

  128. Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983). Seminal paper that examines the ecological role of marine microorganisms in, and coins the term, the 'microbial loop'.

    Article  Google Scholar 

  129. Sperandio, S., de Belle, I. & Bredesen, D. E. An alternative, non-apoptotic form of programmed cell death. Proc. Natl Acad. Sci USA 97, 14376–14381 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998). A clear and concise presentation of caspases: regulation, activity, targets and effects.

    Article  CAS  PubMed  Google Scholar 

  131. Stennicke, H. R. & Salvesen, G. S. Properties of the caspases. Biochim. Biophys. Acta 1387, 17–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A. & Yuan, J. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  136. Fischer, U., Jänicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Garcia-Calvo, M. et al. Inhibition of human caspase by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273, 32608–32613 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Boyce, M., Degterev, A. & Yuan, J. Caspases: an ancient cellular sword of Damocles. Cell Death Diff. 11, 29–37 (2004). Explores the possible evolutionary origin of the caspase superfamily and examines information on the mechanisms and functions of non-mammalian caspases.

    Article  CAS  Google Scholar 

  139. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Felsenstein, J. Phylogeny inference package (Version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

  141. Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell Science, Massachusetts, 1997).

    Google Scholar 

  142. Falkowski, P. G. et al. The evolutionary history of eukaryotic phytoplankton. Science (in the press). A comprehensive article that details the evolution of phytoplankton through geologic time scales and explores why the oceans are dominated by representatives of the red phytoplankton lineage.

  143. Alldredge, A. L. & Gotschalk, C. C. Direct observation of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. 36, 159–171 (1989).

    Article  CAS  Google Scholar 

  144. Cottrell, M. T. & Suttle, C. A. Widspread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

    Article  Google Scholar 

  145. Sandaa, R. -A., Heldal, M., Castberg, T., Thyrhaug, R. & Bratbak, G. Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 290, 272–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Jacobsen, A., Bratbak, G. & Heldal, M. Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J. Phycol. 32, 923–927 (1996).

    Article  Google Scholar 

  147. Suttle, C. A. & Chan, A. M. Viruses infecting the marine Prymnesiophyte Chrysochromulina spp.: isolation, preliminary characterization and natural abundance. Mar. Ecol. Prog. Ser. 118, 275–282 (1995).

    Article  Google Scholar 

  148. Milligan, K. L. D. & Cosper, E. M. Isolation of virus capable of lysing the brown tide microalga, Aureococcus anophagefferens. Science 266, 805–807 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Garry, R. T., Hearing, P. & Cosper, E. M. Characterization of a lytic virus infectious to the bloom-forming microalga Aureococus anophagefferens (Pelagophyceae). J. Phycol. 34, 616–621 (1988).

    Article  Google Scholar 

  150. Nagasaki, K. & Yamaguchi, M. Isolation of a virus infectious to the harmful bloom causing microalga Heterosigma akashiwo (Raphidophyceae). Aquat. Microb. Ecol. 13, 135–140 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for helpful discussions and apologize to investigators whose work was not mentioned due to space constraints. The work cited from our laboratory was supported by grants from the National Institute of Health (USA), the Center for Environmental Bioinorganic Chemistry (Princeton University, USA) and the National Science Foundation (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Falkowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

Anabaena variabilis ATCC 29413

Chlamydomonas reinhardtii

Chlorobium tepidum TLS

Gloeobacter violaceus PCC 7421

Nostoc punctiforme

Prochlorococcus marinus MIT 9313

Synechococcus sp. PCC 7942

Synechococcus sp. WH 8102

Synechocystis sp. PCC 6803

Thermosynechococcus elongatus BP-1

Trichodesmium erythraeum

FURTHER INFORMATION

Paul G. Falkowski's laboratory

Cyanobacteria Genome Database

Chlamydomonas Resource Centre

Introduction to the Cyanobacteria

Emiliania huxleyi

Prochlorococcus marinus MED4 genome

Prochlorococcus marinus SS120 genome

Freshwater dinoflagellates

Glossary

PHYTOPLANKTON

A diverse polyphyletic group of photosynthetic prokaryotic and eukaryotic microorganisms that float with the currents.

PRIMARY PRODUCTIVITY

The fixation of CO2 into organic sugars through photosynthesis or chemosynthesis. An overwhelming majority (>90%) of marine primary productivity derives from the photosynthetic activity of phytoplankton.

COCCOLITHOPHORID

An abundant and specialized group of phytoplankton, which precipitate calcium carbonate into hard plates, or 'coccoliths', surrounding the cells. The production of coccoliths gives these organisms an important role in the removal of CO2 from oceanic waters and its subsequent long-term burial. Coccolithorphorids are in the Prymnesiophyte class.

PARACASPASES

A family of proteases found in animals and slime moulds that, on the basis of sequence analysis, are orthologous to caspases and metacaspases.

METACASPASES

A family of proteases found in higher plants, unicellular protists, fungi and specialized bacteria that, on the basis of sequence analysis, are orthologous to caspases and paracaspases.

ORTHOLOGUES

Genes in any number of species that are thought to be descended from a single gene in the last common ancestor of those species. Orthologues result from the isolation of allelic forms in different species and only differ by subsequent independent mutations that have occurred after isolation. Orthologue assignments are purely historical and do not involve function.

PHYTOPLANKTON LINEAGES

The 'red' and 'green' phytoplankton lineages are two ancient superfamilies, or clusters of phyla, of eukaryotic phytoplankton that, based on the morphology of chloroplasts and sequence analysis of the genes contained therein, evolved independently after the primary endosymbiotic event with a cyanobacterium.

KIN SELECTION MODEL

A model proposed to explain the genetic evolution of altruistic behaviour. It is based on the idea that the genetic material of the altruist is equal to the same number of shared alleles with related individuals (siblings).

EUPHOTIC ZONE

The upper zone in the ocean (usually 80–200 m), where light penetration is sufficient to support net primary productivity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidle, K., Falkowski, P. Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2, 643–655 (2004). https://doi.org/10.1038/nrmicro956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing