Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy

Abstract

Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photosynthesis creates biomass that can be converted to renewable bioenergy.
Figure 2: H2 is a central focus for syntrophy in microbial conversion processes.
Figure 3: Syntrophy of autotrophs and heterotrophs in a microbial approach to photosynthetic bioenergy.

Similar content being viewed by others

References

  1. Energy Information Administration. Annual energy outlook 2006 with projections to 2030 [online] (2006).

  2. Chynoweth, D. P., Owens, J. M. & Legrand, R. Renewable methane from anaerobic digestion of biomass. Renew. Energy 22, 1–8 (2001).

    Article  CAS  Google Scholar 

  3. Hall, D. O. & Rosillo-Calle, F. in Survey of Energy Resources 18th Edn 227–241 (World Energy Council, London, 1998).

    Google Scholar 

  4. Logan, B. E. Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol. 38, 160A–167A (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rittmann, B. E. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 100, 203–212 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Rittmann, B. E., Torres, C. I. & Kato-Marcus, A. in Emerging Technologies (ed. Shah, V.) (Springer, New York, in the press).

  7. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Pulz, O. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57, 287–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Cho, Y. K. et al. Development of a solar-powered microbial fuel cell. J. Appl. Microbiol. 104, 640–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications (McGraw–Hill, New York, 2001).

    Google Scholar 

  12. Tchobanoglous, G. & Burton, F. L. Wastewater Engineering: Treatment and Reuse (McGraw–Hill, New York, 1991).

    Google Scholar 

  13. Gieg, L. M., Duncan, K. E. & Suflita, J. M. Bioenergy production via microbial conversion of residual oil to natural gas. Appl. Environ. Microbiol. 74, 3022–3029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindorfer, H., Waltenberger, R., Kollner, K., Braun, R. & Kirchmayr, R. New data on temperature optimum and temperature changes in energy crop digesters. Bioresour. Technol. 99, 7011–7019 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Logan, B. E. & Regan, J. M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14, 512–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Parkin, G. F. & Owen, W. F. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Engin. 112, 867–920 (1986).

    Article  CAS  Google Scholar 

  17. Hallenbeck, P. C. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52, 21–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, H. S., Parameswaran, P., Kato Marcus, A., Torres, C. I. & Rittmann, B. E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 42, 1501–1510 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Lovley, D. R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497–508 (2006).

    Article  CAS  Google Scholar 

  20. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, M. J. & Zinder, S. H. Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl. Environ. Microbiol. 54, 1457–1461 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nath, K. & Das, D. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65, 520–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Fang, H. H. P., Zhang, T. & Li, C. L. Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge. J. Biotechnol. 126, 357–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laspidou, C. S. & Rittmann, B. E. Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 1983–1992 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Laspidou, C. S. & Rittmann, B. E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 2711–2720 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Miura, Y., Watanabe, Y. & Okabe, S. Significance of chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environ. Sci. Technol. 41, 7787–7794 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko, T. et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res. 2, 153–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Hung, C.-H. et al. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Appl. Microbiol. Biotechnol. 75, 693–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Jo, J. H., Jeon, C. O., Lee, D. S. & Park, J. M. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J. Biotechnol. 131, 300–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, S.-H., Han, S.-K. & Shin, H.-S. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 41, 199–207 (2006).

    Article  CAS  Google Scholar 

  36. Wang, X., Hoefel, D., Saint, C. P., Monis, P. T. & Jin, B. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J. Appl. Microbiol. 103, 1415–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Collins, G., Woods, A., McHugh, S., Carton, M. W. & O'Flaherty, V. Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol. Ecol. 46, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, W. T., Chan, O. C. & Fang, H. H. P. Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res. 36, 3203–3210 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65, 1280–1288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xing, D. F., Ren, N. Q. & Rittmann, B. E. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene. Appl. Environ. Microbiol. 74, 1232–1239 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Holmes, D. E. et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48, 178–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Jung, S. & Regan, J. M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol. 77, 393–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nature Biotechnol. 20, 821–825 (2002).

    Article  CAS  Google Scholar 

  44. Choo, Y. F., Lee, J., Chang, I. S. & Kim, B. H. Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J. Microbiol. Biotechnol. 16, 1481–1484 (2006).

    CAS  Google Scholar 

  45. Kim, J. R., Jung, S. H., Regan, J. M. & Logan, B. E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 98, 2568–2577 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Phung, N. T. et al. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 233, 77–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shigematsu, T. et al. Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J. Biosci. Bioeng. 96, 547–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, Y., Lee, C. & Hwang, S. Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci. Technol. 52, 85–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89, 670–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ariesyady, H. D., Ito, T., Yoshiguchi, K. & Okabe, S. Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. Appl. Microbiol. Biotechnol. 75, 673–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Shigematsu, T. et al. Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl. Environ. Microbiol. 70, 4048–4052 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nyren, P., Pettersson, B. & Uhlen, M. Solid-phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal. Biochem. 208, 171–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M. & Nyren, P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Liolios, K., Mavromatis, K., Tavernarakis, N. & Kyrpides, N. C. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 36, D475–D479 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods 4, 495–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8, 1805–1815 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Mahadevan, R. et al. Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis. OMICS 12, 33–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Methe, B. A., Webster, J., Nevin, K., Butler, J. & Lovley, D. R. DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71, 2530–2538 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mackenzie, C. et al. Postgenomic adventures with Rhodobacter sphaeroides. Annu. Rev. Microbiol. 61, 283–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Holmes, D. E. et al. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl. Environ. Microbiol. 71, 6870–6877 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holmes, D. E. et al. Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiology 154, 1422–1435 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697–9702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ekman, M., Tollbäck, P. & Bergman, B. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. J. Exp. Bot. 59, 1023–1034 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Mandal, M. & Breaker, R. R. Gene regulation by riboswitches. Nature Rev. Mol. Cell Biol. 5, 451–463 (2004).

    Article  CAS  Google Scholar 

  67. Mukhopadhyay, B., Johnson, E. F. & Wolfe, R. S. A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proc. Natl Acad. Sci. USA 97, 11522–11527 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nunez, C. et al. DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. J. Bacteriol. 188, 2792–2800 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Angenent, L. T., Karim, K., Al-Dahhan, M. H. & Domiguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Jin, B., van Leeuwen, J., Yu, Q. & Patel, B. Screening and selection of microfungi for microbial biomass protein production and water reclamation from starch processing wastewater. J. Chem. Technol. Biotechnol. 74, 106–110 (1999).

    Article  CAS  Google Scholar 

  71. Halden, R. U., Colquhoun, D. R. & Wisniewski, E. S. Identification and phenotypic characterization of Sphingomonas wittichii strain RW1 by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 71, 2442–2451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vavilin, D., Yao, D. & Vermaas, W. Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: kinetic analysis of pigment labeling with 15N and 13C. J. Biol. Chem. 282, 37660–37668 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Callister, S. J. et al. Application of the accurate mass and time tag approach to the proteome analysis of sub-cellular fractions obtained from Rhodobacter sphaeroides 2.4.1. Aerobic and photosynthetic cell cultures. J. Proteome Res. 5, 1940–1947 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Callister, S. J. et al. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J. Microbiol. Methods 67, 424–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, W. et al. A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics 6, 4286–4299 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Mahadevan, R. et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Righetti, P. G. et al. Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J. Chromatogr. A 1051, 3–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Unlu, M., Morgan, M. E. & Minden, J. S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  81. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kirkpatrick, D. S., Gerber, S. A. & Gygi, S. P. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rittmann, B. E. Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol. 24, 261–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Colquhoun, D. R. Public Health Applications of Quantitative Protein Biomarkers. Thesis, The Johns Hopkins Univ., Maryland (2008).

    Google Scholar 

Download references

Acknowledgements

The authors have been supported by the National Institute of Environmental Health Sciences NIEHS (grant number 1R01ES015445), the Biodesign Institute at Arizona State University, Science Foundation Arizona, OpenCEL and NZ Legacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Rittmann.

Related links

Related links

DATABASES

Entrez Genome

Geobacter sulfurreducens PCA

Methanocaldococcus jannaschii DSM 2661

Synechocystis sp. PCC 6803

Entrez Genome Project

Desulfovibrio vulgaris

Rhodobacter sphaeroides

FURTHER INFORMATION

Bruce E. Rittmann's homepage

Joint Genome Institute (Why Sequence a Biogas-Producing Microbial Community?)

Glossary

Carbon neutral

The use of carbon dioxide that was released into the atmosphere from the recent consumption of fuel which results in a short-term carbon cycle rather than the net addition of carbon dioxide to the atmosphere.

Hydraulic retention time

The average time that water that is applied to the system resides in the system. The hydraulic retention time is computed as V/Q, in which V is the system volume and Q is the fluid flow rate.

Renewable

In the context of energy, an ultimate source that is available indefinitely and is not depleted. Sunlight is the main renewable energy source.

Self-stabilization

Natural recovery of a desired function of a microbial community following a perturbation.

Specific growth rate

The growth rate of biomass (for example, grams of dry weight per day) divided by the total amount of biomass in the system (for example, grams of dry weight).

Syntrophy

Two or more different types of microorganisms that combine their metabolic capabilities to catabolize a substrate that cannot be catabolized by either microorganism alone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittmann, B., Krajmalnik-Brown, R. & Halden, R. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6, 604–612 (2008). https://doi.org/10.1038/nrmicro1939

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing