Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Anammox bacteria: from discovery to application

Abstract

Anaerobic ammonium oxidation (anammox) bacteria, which were discovered in waste-water sludge in the early 1990s, have the unique metabolic ability to combine ammonium and nitrite or nitrate to form nitrogen gas. This discovery led to the realization that a substantial part of the enormous nitrogen losses that are observed in the marine environment — up to 50% of the total nitrogen turnover — were due to the activity of these bacteria. In this Timeline, Gijs Kuenen recalls the discovery of these unique microorganisms and describes the continuing elucidation of their roles in environmental and industrial microbiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ammonium concentration of the influent and effluent from an anoxic denitrifying pilot reactor as a function of time.
Figure 2: Transmission electron micrograph of a Candidatus Kuenenia stuttgartiensis cell.
Figure 3: Hypothetical catabolism and reversed electron transport in the anammoxosome.
Figure 4: A 16s ribosomal RNA-gene-based phylogenetic tree of anammox bacteria.
Figure 5: Interaction and competition among aerobic and anaerobic nitrifiers.

References

  1. Broda, E. Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491–493 (1977).

    Article  CAS  Google Scholar 

  2. Mulder, A. Anoxic ammonia oxidation. US Patent 5,078,884 (1992).

  3. Mulder, A., van de Graaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–184 (1995).

    Article  CAS  Google Scholar 

  4. van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. van de Graaf, A. A., deBruijn, P., Robertson, L. A., Jetten, M. S. M. & Kuenen, J. G. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor. Microbiology-UK 143, 2415–2421 (1997).

    Article  CAS  Google Scholar 

  6. Schalk, J., Oustad, H., Kuenen, J. G. & Jetten, M. S. M. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiol. Lett. 158, 61–67 (1998).

    Article  CAS  Google Scholar 

  7. Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).

    Article  CAS  Google Scholar 

  8. Strous, M., Van Gerven, E., Kuenen, J. G. & Jetten, M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Appl. Environ. Microbiol. 63, 2446–2448 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

    Article  CAS  Google Scholar 

  10. Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 413–429 (2001).

    Article  CAS  Google Scholar 

  11. Schalk, J., de Vries, S., Kuenen, J. G. & Jetten, M. S. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39, 5405–5412 (2000).

    Article  CAS  Google Scholar 

  12. Shimamura, M. et al. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl. Environ. Microbiol. 73, 1065–1072 (2007).

    Article  CAS  Google Scholar 

  13. Schmid, M. et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93–106 (2000).

    Article  CAS  Google Scholar 

  14. Damsté, J. S. S. et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419, 708–712 (2002).

    Article  Google Scholar 

  15. Mascitti, V. & Corey, E. J. Total synthesis of (±)-pentacycloanammoxic acid. J. Am. Chem. Soc. 126, 15664–15665 (2004).

    Article  CAS  Google Scholar 

  16. Damste, J. S. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M. & Jetten, M. S. M. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272, 4270–4283 (2005).

    Article  Google Scholar 

  17. Boumann, H. A. et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. FEMS Microbiol. Lett. 258, 297–304 (2006).

    Article  CAS  Google Scholar 

  18. Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794 (2006).

    Article  Google Scholar 

  19. Schouten, S. et al. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70, 3785–3788 (2004).

    Article  CAS  Google Scholar 

  20. Guven, D. et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 71, 1066–1071 (2005).

    Article  Google Scholar 

  21. Kartal, B. et al. Candidatus ''Anammoxoglobus propionicus'' a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 30, 39–49 (2007).

    Article  CAS  Google Scholar 

  22. Kartal, B. et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9, 635–642 (2007).

    Article  CAS  Google Scholar 

  23. Wagner, M. & Horn, M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17, 241–249 (2006).

    Article  CAS  Google Scholar 

  24. Kuypers, M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).

    Article  CAS  Google Scholar 

  25. Hamersley, M. R. et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52, 923–933 (2007).

    Article  CAS  Google Scholar 

  26. Schubert, C. J. et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol. 8, 1857–1863 (2006).

    Article  CAS  Google Scholar 

  27. Hao, X. D., Heijnen, J. J. & Van Loosdrecht, M. C. M. Model-based evaluation of temperature and inflow variations on a partial nitrification–ANAMMOX biofilm process. Water Res. 36, 4839–4849 (2002).

    Article  CAS  Google Scholar 

  28. Third, K. A., Sliekers, A. O., Kuenen, J. G. & Jetten, M. S. M. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24, 588–596 (2001).

    Article  CAS  Google Scholar 

  29. Sliekers, A. O. et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 36, 2475–2482 (2002).

    Article  CAS  Google Scholar 

  30. Sliekers, A. O., Third, K. A., Abma, W., Kuenen, J. G. & Jetten, M. S. CANON and Anammox in a gas-lift reactor. FEMS Microbiol. Lett. 218, 339–344 (2003).

    Article  CAS  Google Scholar 

  31. Third, K. A. et al. Treatment of nitrogen-rich wastewater using partial nitrification and anammox in the CANON process. Water Sci. Technol. 52, 47–54 (2005).

    Article  CAS  Google Scholar 

  32. Egli, K. et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175, 198–207 (2001).

    Article  CAS  Google Scholar 

  33. Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002).

    Article  CAS  Google Scholar 

  34. Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68, 3802–3808 (2002).

    Article  CAS  Google Scholar 

  35. Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T. & Meyer, R. L. Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnol. Oceanogr. Methods 1, 63–73 (2003).

    Article  Google Scholar 

  36. Kuypers, M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003).

    Article  CAS  Google Scholar 

  37. Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuna-Gonzalez, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).

    Article  CAS  Google Scholar 

  38. Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156, 457–464 (2005).

    Article  CAS  Google Scholar 

  39. Kuypers, M. M. M., Lavik, G. & Thamdrup, B. in Past and Present Water Column Anoxia (ed. Neretin, L. N.) 311–335 (Springer, Sevastopol, 2006).

    Book  Google Scholar 

  40. Rysgaard, S., Glud, R. N., Risgaard-Petersen, N. & Dalsgaard, T. Denitrification and anammox activity in Arctic marine sediments. Limnol. Oceanogr. 49, 1493–1502 (2004).

    Article  CAS  Google Scholar 

  41. Penton, C. R., Devol, A. H. & Tiedje, J. M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol. 72, 6829–6832 (2006).

    Article  CAS  Google Scholar 

  42. van Dongen, U., Jetten, M. S. M. & van Loosdrecht, M. C. M. The SHARON®–Anammox® process for treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153–160 (2001).

    Article  CAS  Google Scholar 

  43. Jetten, M. S. M. et al. Improved nitrogen removal by application of new nitrogen-cycle bacteria. Rev. Environ. Sci. Biotechnol. 1, 51–63 (2002).

    Article  CAS  Google Scholar 

  44. van der Star, W. R. L. et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41, 4149–4163 (2007).

    Article  CAS  Google Scholar 

  45. van Niftrik, L. A. et al. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett. 233, 7–13 (2004).

    Article  CAS  Google Scholar 

  46. van Niftrik, L. et al. Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J. Struct. Biol. 2 Jun 2007 (doi:10.1016/j.jsb.2007.05.005).

    Article  CAS  Google Scholar 

  47. van Niftrik, L. et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage and localization of cytochrome c proteins. J. Bacteriol. 190, 708–717 (2007).

    Article  Google Scholar 

  48. Lam, P. et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc. Natl Acad. Sci. USA 104, 7104–7109 (2007).

    Article  CAS  Google Scholar 

  49. Koenneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archeon. Nature 437, 543–546 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks M. Strous and M. Jetten for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Candidatus Brocadia anammoxidans

Candidatus Kuenenia stuttgartiensis

Nitrosomonas eutropha

FURTHER INFORMATION

J. Gijs Kuenen's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuenen, J. Anammox bacteria: from discovery to application. Nat Rev Microbiol 6, 320–326 (2008). https://doi.org/10.1038/nrmicro1857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing