Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exit strategies of intracellular pathogens

Key Points

  • How intracellular pathogens exit host cells is an important and overlooked topic in the study of host–pathogen interactions.

  • This Review highlights the diverse strategies and specialized mechanisms that are used by intracellular pathogens to escape their resident vacuole and, subsequently, the host cell.

  • Vacuole exit is typically accomplished by the action of pathogen-secreted pore-forming proteins, or phospholipases, on vacuole membranes to cause their disruption.

  • Strategies for pathogen exit from cells include: triggering host-cell lysis from within the cell; using actin-based motility to protrude out of the host cell; budding out of the cell; vacuole extrusion out of the cell; vacuole exocytosis; induction of inflammatory pyroptosis in the host cell; and induction of host-cell apoptosis.

Abstract

The exit of intracellular pathogens from host cells is an important step in the infectious cycle, but is poorly understood. It has recently emerged that microbial exit is a process that can be directed by organisms from within the cell, and is not simply a consequence of the physical or metabolic burden that is imposed on the host cell. This Review summarizes our current knowledge on the diverse mechanisms that are used by intracellular pathogens to exit cells. An integrated understanding of the diversity that exists for microbial exit pathways represents a new horizon in the study of host–pathogen interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of vacuole escape by intracellular pathogens.
Figure 2: Vacuole escape into the cytosol by Listeria monocytogenes under different invasion conditions.
Figure 3: Strategies and mechanisms used by intracellular pathogens to exit host cells.
Figure 4: Examples of bacterial exit mechanisms.

Similar content being viewed by others

References

  1. Knodler, L. A., Celli, J. & Finlay, B. B. Pathogenic trickery: deception of host cell processes. Nature Rev. Mol. Cell Biol. 2, 578–588 (2001).

    Article  CAS  Google Scholar 

  2. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Almeida-Campos, F. R., Noronha, F. S. & Horta, M. F. The multitalented pore-forming proteins of intracellular pathogens. Microbes Infect. 4, 741–750 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Gaillard, J. L., Berche, P., Mounier, J., Richard, S. & Sansonetti, P. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun. 55, 2822–2829 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bielecki, J., Youngman, P., Connelly, P. & Portnoy, D. A. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345, 175–176 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Kayal, S. & Charbit, A. Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions. FEMS Microbiol. Rev. 30, 514–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jacobs, T. et al. Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol. Microbiol. 28, 1081–1089 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Goebel, W. & Kuhn, M. Bacterial replication in the host cell cytosol. Curr. Opin. Microbiol. 3, 49–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Beauregard, K. E., Lee, K. D., Collier, R. J. & Swanson, J. A. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186, 1159–1163 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glomski, I. J., Gedde, M. M., Tsang, A. W., Swanson, J. A. & Portnoy, D. A. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J. Cell Biol. 156, 1029–1038 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schnupf, P., Portnoy, D. A. & Decatur, A. L. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell. Microbiol. 8, 353–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Schnupf, P. et al. Regulated translation of listeriolysin O controls virulence of Listeria monocytogenes. Mol. Microbiol. 61, 999–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. High, N., Mounier, J., Prevost, M. C. & Sansonetti, P. J. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J. 11, 1991–1999 (1992). Demonstrated the essential role of S. flexneri IpaB in vacuole lysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Page, A. L., Ohayon, H., Sansonetti, P. J. & Parsot, C. The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cell. Microbiol. 1, 183–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Hayward, R. D. et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol. 56, 590–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Picking, W. L. et al. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun. 73, 1432–1440 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews, N. W., Abrams, C. K., Slatin, S. L. & Griffiths, G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell 61, 1277–1287 (1990). Identified the T. cruzi -encoded PFP and presented its role in pH-responsive vacuole lysis.

    Article  CAS  PubMed  Google Scholar 

  18. Ley, V., Robbins, E. S., Nussenzweig, V. & Andrews, N. W. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J. Exp. Med. 171, 401–413 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Noronha, F. S., Ramalho-Pinto, F. J. & Horta, M. F. Cytolytic activity in the genus Leishmania: involvement of a putative pore-forming protein. Infect. Immun. 64, 3975–3982 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Noronha, F. S., Cruz, J. S., Beirao, P. S. & Horta, M. F. Macrophage damage by Leishmania amazonensis cytolysin: evidence of pore formation on cell membrane. Infect. Immun. 68, 4578–4584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida-Campos, F. R. & Horta, M. F. Proteolytic activation of leishporin: evidence that Leishmania amazonensis and Leishmania guyanensis have distinct inactive forms. Mol. Biochem. Parasitol. 111, 363–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, T., Gu, F. & Gruenberg, J. Lipids, lipid domains and lipid-protein interactions in endocytic membrane traffic. Semin. Cell Dev. Biol. 9, 517–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Smith, G. A. et al. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63, 4231–4237 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marquis, H. & Hager, E. J. pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol. Microbiol. 35, 289–298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Camilli, A., Tilney, L. G. & Portnoy, D. A. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8, 143–157 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vazquez-Boland, J. A. et al. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun. 60, 219–230 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gedde, M. M., Higgins, D. E., Tilney, L. G. & Portnoy, D. A. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68, 999–1003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alberti-Segui, C., Goeden, K. R. & Higgins, D. E. Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell. Microbiol. 9, 179–195 (2007). Described the discrete roles of L. monocytogenes LLO and phospholipases in disruption of the double-membrane secondary vacuoles.

    Article  CAS  PubMed  Google Scholar 

  29. Hackstadt, T. The biology of rickettsiae. Infect. Agents Dis. 5, 127–143 (1996).

    CAS  PubMed  Google Scholar 

  30. Winkler, H. H. & Miller, E. T. Phospholipase A and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells). Infect. Immun. 38, 109–113 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Silverman, D. J., Santucci, L. A., Meyers, N. & Sekeyova, Z. Penetration of host cells by Rickettsia rickettsii appears to be mediated by a phospholipase of rickettsial origin. Infect. Immun. 60, 2733–2740 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Walker, D. H., Feng, H. M. & Popov, V. L. Rickettsial phospholipase A2 as a pathogenic mechanism in a model of cell injury by typhus and spotted fever group rickettsiae. Am. J. Trop. Med. Hyg. 65, 936–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ogata, H. et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293, 2093–2098 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Renesto, P. et al. Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. J. Infect. Dis. 188, 1276–1283 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Whitworth, T., Popov, V. L., Yu, X. J., Walker, D. H. & Bouyer, D. H. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect. Immun. 73, 6668–6673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cummings, B. S., McHowat, J. & Schnellmann, R. G. Phospholipase A2s in cell injury and death. J. Pharmacol. Exp. Ther. 294, 793–799 (2000).

    CAS  PubMed  Google Scholar 

  37. Campbell, S., Richmond, S. J. & Yates, P. The development of Chlamydia trachomatis inclusions within the host eukaryotic cell during interphase and mitosis. J. Gen. Microbiol. 135, 1153–1165 (1989).

    CAS  PubMed  Google Scholar 

  38. Neeper, I. D., Patton, D. L. & Kuo, C. C. Cinematographic observations of growth cycles of Chlamydia trachomatis in primary cultures of human amniotic cells. Infect. Immun. 58, 2042–2047 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hybiske, K. & Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl Acad. Sci. USA 104, 11430–11435 (2007). This work discovered and characterized the two independent pathways of cellular exit in Chlamydia spp. — lysis of the host cell and extrusion of the Chlamydia -containing vacuole.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, X., Van Vleet, T. & Schnellmann, R. G. The role of calpain in oncotic cell death. Annu. Rev. Pharmacol. Toxicol. 44, 349–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Hadley, T., Aikawa, M. & Miller, L. H. Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp. Parasitol. 55, 306–311 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Lyon, J. A. & Haynes, J. D. Plasmodium falciparum antigens synthesized by schizonts and stabilized at the merozoite surface when schizonts mature in the presence of protease inhibitors. J. Immunol. 136, 2245–2251 (1986).

    CAS  PubMed  Google Scholar 

  43. Wickham, M. E., Culvenor, J. G. & Cowman, A. F. Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. J. Biol. Chem. 278, 37658–37663 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Glushakova, S., Yin, D., Li, T. & Zimmerberg, J. Membrane transformation during malaria parasite release from human red blood cells. Curr. Biol. 15, 1645–1650 (2005). References 43 and 44 demonstrated that P. falciparum exit from erythrocytes is a two-step process of vacuole and cell lysis. Reference 43 also demonstrated the involvement of distinct proteases in each step.

    Article  CAS  PubMed  Google Scholar 

  45. Salmon, B. L., Oksman, A. & Goldberg, D. E. Malaria parasite exit from the host erythrocyte: a two-step process requiring extraerythrocytic proteolysis. Proc. Natl Acad. Sci. USA 98, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rosenthal, P. J. Cysteine proteases of malaria parasites. Int. J. Parasitol. 34, 1489–1499 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Aly, A. S. & Matuschewski, K. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J. Exp. Med. 202, 225–230 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horta, M. F. Pore-forming proteins in pathogenic protozoan parasites. Trends Microbiol. 5, 363–366 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Black, M. W. & Boothroyd, J. C. Lytic cycle of Toxoplasma gondii. Microbiol. Mol. Biol. Rev. 64, 607–623 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Black, M. W., Arrizabalaga, G. & Boothroyd, J. C. Ionophore-resistant mutants of Toxoplasma gondii reveal host cell permeabilization as an early event in egress. Mol. Cell Biol. 20, 9399–9408 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moudy, R., Manning, T. J. & Beckers, C. J. The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J. Biol. Chem. 276, 41492–41501 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Stevens, J. M., Galyov, E. E. & Stevens, M. P. Actin-dependent movement of bacterial pathogens. Nature Rev. Microbiol. 4, 91–101 (2006).

    Article  CAS  Google Scholar 

  53. Yoshida, S. et al. Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314, 985–989 (2006). Demonstrated the importance of the VirA-dependent microtubule-tunnelling behaviour of Shigella spp. in intracellular actin-based motility.

    Article  CAS  PubMed  Google Scholar 

  54. Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA 86, 3867–3871 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Portnoy, D. A., Auerbuch, V. & Glomski, I. J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158, 409–414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robbins, J. R. et al. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146, 1333–1350 (1999). The first real-time analysis of Listeria spp. cell-to-cell spread; showed that protrusion engulfment is due to endogenous host endocytic processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Monack, D. M. & Theriot, J. A. Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake. Cell. Microbiol. 3, 633–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. de la Maza, L. M. & Peterson, E. M. Scanning electron microscopy of McCoy cells infected with Chlamydia trachomatis. Exp. Mol. Pathol. 36, 217–226 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. Todd, W. J. & Caldwell, H. D. The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells. J. Infect. Dis. 151, 1037–1044 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Beatty, W. L. Lysosome repair enables host cell survival and bacterial persistence following Chlamydia trachomatis infection. Cell. Microbiol. 9, 2141–2152 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Moazed, T. C., Kuo, C. C., Grayston, J. T. & Campbell, L. A. Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J. Infect. Dis. 177, 1322–1325 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Schaechter, M., Bozeman, F. M. & Smadel, J. E. Study on the growth of Rickettsiae. II. Morphologic observations of living Rickettsiae in tissue culture cells. Virology 3, 160–172 (1957).

    Article  CAS  PubMed  Google Scholar 

  63. Higashi, N. in Recent Advances in Studies of Tsutsugamushi Disease in Japan (ed. Tamiya, T.) 145–156 (Medical Culture, Tokyo, 1962).

    Google Scholar 

  64. Ewing, E. P., Takeuchi, A., Shirai, A. & Osterman, J. V. Experimental infection of mouse peritoneal mesothelium with scrub typhus rickettsiae: an ultrastructural study. Infect. Immun. 19, 1068–1075 (1978).

    PubMed  PubMed Central  Google Scholar 

  65. Urakami, H., Tsuruhara, T. & Tamura, A. Penetration of Rickettsia tsutsugamushi into cultured mouse fibroblasts (L cells): an electron microscopic observation. Microbiol. Immunol. 27, 251–263 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Kadosaka, T. & Kimura, E. Electron microscopic observations of Orientia tsutsugamushi in salivary gland cells of naturally infected Leptotrombidium pallidum larvae during feeding. Microbiol. Immunol. 47, 727–733 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Alvarez, M. & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156–2160 (2006). References 67 and 68 discovered the phagosome expulsion strategy of cellular exit by C. neoformans.

    Article  CAS  PubMed  Google Scholar 

  69. Weinrauch, Y. & Zychlinsky, A. The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol. 53, 155–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Gao, L. Y. & Kwaik, Y. A. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol. 8, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005). Excellent review that compared cell-death pathways, including pathogen-induced pyroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, Y., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hilbi, H. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895–32900 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Fantuzzi, G. & Dinarello, C. A. Interleukin-18 and interleukin-1β: two cytokine substrates for ICE (caspase-1). J. Clin. Immunol. 19, 1–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Mariathasan, S. & Monack, D. M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nature Rev. Immunol. 7, 31–40 (2007).

    Article  CAS  Google Scholar 

  76. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, 1082–1091 (2007).

    Article  CAS  Google Scholar 

  77. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002). First description of the inflammasome as a signalling scaffold for caspase-1 activation.

    CAS  PubMed  Google Scholar 

  78. Suzuki, T. et al. A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J. Biol. Chem. 280, 14042–14050 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Hueffer, K. & Galan, J. E. Salmonella-induced macrophage death: multiple mechanisms, different outcomes. Cell. Microbiol. 6, 1019–1025 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Fink, S. L. & Cookson, B. T. Pyroptosis and host cell death responses during Salmonella infection. Cell. Microbiol. 9, 2562–2570 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006).

    Article  CAS  Google Scholar 

  83. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006). References 82 and 83 showed that S. typhimurium flagellin that is secreted into the cytosol of host cells is responsible for inflammasome and caspase-1 activation.

    Article  CAS  Google Scholar 

  84. Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zamboni, D. S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol. 7, 318–325 (2006).

    Article  CAS  Google Scholar 

  86. Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006). References 84, 85 and 86 established that the recognition of secreted L. pneumophila flagellin by NAIP5 is responsible for Legionella -induced inflammasome and caspase-1 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guzman, C. A. et al. Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes. Mol. Microbiol. 20, 119–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Merrick, J. C., Edelson, B. T., Bhardwaj, V., Swanson, P. E. & Unanue, E. R. Lymphocyte apoptosis during early phase of Listeria infection in mice. Am. J. Pathol. 151, 785–792 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rogers, H. W., Callery, M. P., Deck, B. & Unanue, E. R. Listeria monocytogenes induces apoptosis of infected hepatocytes. J. Immunol. 156, 679–684 (1996).

    CAS  PubMed  Google Scholar 

  90. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Ozoren, N. et al. Distinct roles of TLR2 and the adaptor ASC in IL-1β/IL-18 secretion in response to Listeria monocytogenes. J. Immunol. 176, 4337–4342 (2006).

    Article  PubMed  Google Scholar 

  92. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Mariathasan, S., Weiss, D. S., Dixit, V. M. & Monack, D. M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gavrilin, M. A. et al. Internalization and phagosome escape required for Francisella to induce human monocyte IL-1β processing and release. Proc. Natl Acad. Sci. USA 103, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Lai, X. H., Golovliov, I. & Sjostedt, A. Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun. 69, 4691–4694 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lai, X. H. & Sjostedt, A. Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect. Immun. 71, 4642–4646 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ojcius, D. M., Souque, P., Perfettini, J. L. & Dautry-Varsat, A. Apoptosis of epithelial cells and macrophages due to infection with the obligate intracellular pathogen Chlamydia psittaci. J. Immunol. 161, 4220–4226 (1998).

    CAS  PubMed  Google Scholar 

  98. Perfettini, J. L. et al. Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia. Biochimie 85, 763–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Miyairi, I. & Byrne, G. I. Chlamydia and programmed cell death. Curr. Opin. Microbiol. 9, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Zhong, Y., Weininger, M., Pirbhai, M., Dong, F. & Zhong, G. Inhibition of staurosporine-induced activation of the proapoptotic multidomain Bcl-2 proteins Bax and Bak by three invasive chlamydial species. J. Infect. 53, 408–414 (2006).

    Article  PubMed  Google Scholar 

  101. Byrne, G. I. & Ojcius, D. M. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nature Rev. Microbiol. 2, 802–808 (2004).

    Article  CAS  Google Scholar 

  102. Sansonetti, P. J., Arondel, J., Cavaillon, J. M. & Huerre, M. Role of interleukin-1 in the pathogenesis of experimental shigellosis. J. Clin. Invest. 96, 884–892 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zychlinsky, A. & Sansonetti, P. J. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 5, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Navarre, W. W. & Zychlinsky, A. Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell. Microbiol. 2, 265–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Wick, M. J. The role of dendritic cells during Salmonella infection. Curr. Opin. Immunol. 14, 437–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Lara-Tejero, M. et al. Role of caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Golovliov, I., Baranov, V., Krocova, Z., Kovarova, H. & Sjostedt, A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun. 71, 5940–5950 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Portnoy, P. Sansonetti, R. Vance and C. Conant for providing a critical review and comments regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Stephens.

Related links

Related links

DATABASES

Entrez Genome Project

Burkholderia pseudomallei

Chlamydia trachomatis

Chlamydia pneumoniae

Cryptococcus neoformans

Francisella tularensis

Legionella pneumophila

Listeria monocytogenes

Mycobacterium marinum

Orientia tsutsugamushi

Plasmodium berghei

Plasmodium falciparum

Rickettsia conorii

Rickettsia prowazekii

Rickettsia rickettsii

Rickettsia typhi

Salmonella typhimurium

Shigella flexneri

Toxoplasma gondii

Trypanosoma cruzi

Entrez Protein

IpaB

IpaC

IpaD

VirA

FURTHER INFORMATION

Richard S. Stephens's homepage

Glossary

Pore-forming protein

(PFP). A secreted protein that inserts into and disrupts membrane bilayers by forming pores that are permeable to ions and macromolecules.

Osmotic lysis

The consequence of the cytosol becoming hypertonic to the extracellular environment; results in water influx, cell swelling and membrane rupture.

Secondary vacuole

A double-membrane vacuole that is formed after the cell-to-cell spread of some actin-motile bacteria. The inner and outer membranes are derived from the plasma membrane's initial and target host cells, respectively.

Obligate intracellular parasite

A pathogen that is capable only of replicative growth within host cells.

Actin-related protein 2/3 complex

A seven-subunit protein complex that is activated in response to actin-nucleation promoting factors, to directly initiate actin polymerization into y-branched actin networks.

Necrosis

Cell death that is generally due to environmental insults or physical damage that is incurred by the cell. Necrosis is morphologically characterized by extensive membrane destruction.

Type III secretion system

(T3SS). A needle-like secretion apparatus in Gram-negative bacteria that forms pores in host membranes and allows the injection of virulence factors from the bacterial cytoplasm into the cytosol of host cells.

Pathogen-associated molecular pattern

A small molecular motif that is conserved across microbial species and engages innate immune receptors (for example, Toll-like receptors). Examples include: lipopolysaccharide, peptidoglycan, flagellin, double stranded RNA and unmethylated cytosine phosphate guanosine DNA motifs.

Pathogenicity island

A large genomic insertion that is acquired by horizontal transfer and contains numerous genes that are associated with virulence.

Flagellin

A subunit protein in flagella structures in bacteria; also recognized by the host innate immune system.

Dot–Icm type IV secretion system

A multi-protein secretion system in L. pneumophila that is used to secrete virulence factors into the cytosol of host cells, and is essential for intracellular infection.

Polymorphonuclear lymphocyte

A class of leukocytes that includes neutrophils, eosinophils and basophils, and is characterized by the possession of multi-lobed nuclei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hybiske, K., Stephens, R. Exit strategies of intracellular pathogens. Nat Rev Microbiol 6, 99–110 (2008). https://doi.org/10.1038/nrmicro1821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing