Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mix and match: how climate selects phytoplankton

An Erratum to this article was published on 01 December 2007

Abstract

Climate strongly influences the distribution and diversity of animals and plants, but its affect on microbial communities is poorly understood. By using resource competition theory, fundamental physical principles and the fossil record we review how climate selects marine eukaryotic phytoplankton taxa. We suggest that climate determines the equator-to-pole and continent-to-land thermal gradients that provide energy for the wind-driven turbulent mixing in the upper ocean. This mixing, in turn, controls the nutrient fluxes that determine cell size and taxa-level distributions. Understanding this chain of linked processes will allow informed predictions to be made about how phytoplankton communities will change in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrographs of representative eukaryotic phytoplankton taxa from the Phanaerozoic period.
Figure 2: A cartoon of the biological pump.
Figure 3: An idealized diagram of the nutrient concentration and the flow field that immediately surrounds a cell.
Figure 4: A colour satellite image of a diatom bloom off the west coast of Vancouver Island, Canada.
Figure 5: Changes in ocean thermal structure and the size of diatoms in the Cenozoic period.

Similar content being viewed by others

References

  1. Canfield, D. E. & Thamdrup, B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266, 1973–1975 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 606–609 (1992).

    Google Scholar 

  3. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Article  CAS  Google Scholar 

  4. Tappan, H. The Paleobiology of Plant Protists. (Freeman & Co, San Francisco, 1980).

    Google Scholar 

  5. Lipps, J. H. Plankton evolution. Evolution 24, 1–22 (1970).

    Article  PubMed  Google Scholar 

  6. Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H. & Falkowski, P. G. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev. Ecol. Evol. Syst. 35, 523–556 (2004).

    Article  Google Scholar 

  7. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Crowley, T. & North, G. Paleoclimatology (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  10. Rahmstorf, S. & Ganopolski, A. Long-term global warming scenarios computed with an efficient coupled climate model. Clim. Change 43, 353–367 (1999).

    Article  CAS  Google Scholar 

  11. Margalef, R. in Perspectives in Marine Biology (ed. Buzzati-Traverso, A. A.) 323–349 (University of California Press, Berkeley, 1960).

    Google Scholar 

  12. Margalef, R. Turbulence and marine life. Sci. Mar. Suppl. 61, 109–123 (1997).

    Google Scholar 

  13. Munk, W. & Wunsch, C. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45, 1977–2010 (1998).

    Article  Google Scholar 

  14. Vallis, G. K. Large-scale circulation and production of stratification: effects of wind, geometry, and diffusion. J. Phys. Oceanogr. 30, 933–954 (2000).

    Article  Google Scholar 

  15. Falkowski, P., Barber, R. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Laws, E. A., Falkowsk, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).

    Article  CAS  Google Scholar 

  17. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  18. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  Google Scholar 

  19. Sarmiento, J. L. & Bender, M. Carbon biogeochemistry and climate change. Photosyn. Res. 39, 209–234 (1994).

    Article  CAS  Google Scholar 

  20. Volk, T. & Hoffert, M. I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Geophys. Monogr. 32, 99–110 (1985).

    Google Scholar 

  21. Goldman, J. in Toward a Theory on Biological-Physical Interactions on the World Ocean (ed. Rothchild, B.) 273–296 (Kluwer Academic, Dordrecht, 1988).

    Book  Google Scholar 

  22. Falkowski, P. G., Laws, E. A., Barber, R. T. & Murray, J. W. in Ocean Biogeochemistry: a JGOFS Synthesis (ed. Fasham, M.) 99–122 (Elsevier, New York, 2003).

    Book  Google Scholar 

  23. Cullen, J. J., Franks, P. J. S., Karl, D. M. & Longhurst, A. in The Sea: Biological-Physical Interactions in the Sea (eds. Robinson, A. R., McCarthy, J. J. & Rothschild, B. J.) 297–336 (John Wiley & Sons, New York, 2002).

    Google Scholar 

  24. Smayda, T. J. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev. 8, 353–414 (1970).

    Google Scholar 

  25. Bienfang, P. K. & Ziemanm, D. A. in Primary Productivity and Biogeochemical Cycles in the Sea (eds. Falkowski, P. G. & Woodhead, A. D.) 285–298 (Plenum, New York, 1992).

    Book  Google Scholar 

  26. Sancetta, C., Villareal, T. & Falkowski, P. G. Massive fluxes of rhizosolenoid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).

    Article  Google Scholar 

  27. Dugale, R. & Wilkerson, F. in Primary Productivity and Biogeological Cycles in the Sea (eds Woodhead, A. D. & Falkowski, P. G.) 107–122 (Plenum, New York, 1992).

    Book  Google Scholar 

  28. Jenkins, W. J. & Doney, S. C. The subtropical nutrient spiral. Glob. Biogeochem. Cycles [online], (2003).

  29. Sarmiento, J. L. High latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Ledwell, J., Watson, A. J. & Law, C. S. Evidence for slow mixing across the pycnocline from an open ocean tracer-release experiment. Nature 364, 701–703 (1993).

    Article  CAS  Google Scholar 

  31. Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. Cons. Explor. Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  32. Denman, K. L. & Gargett, A. E. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28, 801–815 (1983).

    Article  Google Scholar 

  33. Stommel, H. An elementary explanation of why ocean currents are strongest in the west. Am. Meteorol, Soc. Bull. 32, 21–23 (1951).

    Article  Google Scholar 

  34. Kolmogorov, A. N. Dissipation of energy in a locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 141 (1941).

    Google Scholar 

  35. Tilman, D. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).

    Article  CAS  Google Scholar 

  36. Droop, M. R. Nutrient limitation in osmotrophic protista. Am. Zool. 13, 209–214 (1973).

    Article  Google Scholar 

  37. Grover, J. P. Dynamics of competition among microaglae in variable environments: experimental tests of alternative models. OIKOS 62, 231–243 (1991).

    Article  Google Scholar 

  38. Tozzi, S. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar. Ecol. Prog. Ser 274, 123–132 (2004).

    Article  Google Scholar 

  39. Litchman, E., Klausmeier, C. A., Miller, J. R., Schofield, O. M. & Falkowski, P. G. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3, 585–606 (2006).

    Article  CAS  Google Scholar 

  40. Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, Princeton, 1982).

    Google Scholar 

  41. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article  Google Scholar 

  42. Siegel, D. Resource competition in a discrete environment: why are plankton distributions paradoxical? Limnol. Oceanogr. 43, 1133–1146 (1998).

    Article  Google Scholar 

  43. Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    Article  CAS  PubMed  Google Scholar 

  44. Karp-Boss, L. E., Boss, E. & Jumars, P. A. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Ann. Rev. 34, 71–107 (1996).

    Google Scholar 

  45. Pasciak, W. J. & Gavis, J. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19, 881–888 (1974).

    Article  Google Scholar 

  46. Munk, W. H. & Riley, G. A. Absorption of nutrients by aquatic plants. J. Mar. Res 11, 215–240 (1952).

    Google Scholar 

  47. Wolf-Gladrow, D. & Riebesell, U. Diffusion and reactions in the vicinity of plankton: a refined model for inorganic carbon transport. Mar. Chem. 59, 17–34 (1997).

    Article  CAS  Google Scholar 

  48. Reynolds, C. S. Vegetation Processes in the Pelagic: a Model for Ecosystem Theory. 371 (Odendorf-Luhe, Germany,1997).

    Google Scholar 

  49. Smetacek, V. Diatoms and the ocean carbon cycle. Protist 150, 25–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Raven, J. A. The role of vacuoles. New Phytol. 106, 357–422 (1987).

    Article  Google Scholar 

  51. Iglesias-Rodriguez, D. M. et al. Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Glob. Biogeochem. Cycles [online] (2002).

  52. Emiliani, C. Mineralogical and chemical composition of the tests of certain pelagic foraminifera. Micropaleontology 1, 377–380 (1955).

    Article  CAS  Google Scholar 

  53. Falkowski, P. G. et al. The evolutionary history of eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Falkowski, P. G. & Knoll, A. H. (eds) Evolution of Primary Producers in the Sea (Academic, New York, 2007).

    Google Scholar 

  55. Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Koistra, W., Gersonde, R., Medlin, L. & Mann, D. G. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 207–249 (Academic, New York, 2007).

    Book  Google Scholar 

  57. Shackleton, N. J. Oxygen isotopes, ice volume, and sea level. Quat. Sci. Rev. 6, 183–190 (1987).

    Article  Google Scholar 

  58. Fisher, A. G. in Catastrophes and Earth History (eds Berggren, W. A. & van Couvering, J. A.) 129–150 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  59. Finkel, Z. V., Katz, M., Wright, J., Schofield, O. & Falkowski, P. Climatically-driven evolutionary change in the size structure of diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oliver, M. J., Petrov, D., Ackerly, D., Falkowski, P. & Schofield, O. M. The mode and tempo of genome size evolution in eukaryotes. Genome Res. 17, 594–601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Connolly, J. et al. Correlated evolution of cell volume and genome size in diatoms (Bacillariophyceae). J. Phycol. (in the press).

  62. Bambach, R. K. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19, 372–397 (1993).

    Article  Google Scholar 

  63. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).

    Article  CAS  Google Scholar 

  65. Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehen, M. Response of diatoms distribution to global warming and potential implications: a global model study. Geophys. Res. Lett. 32, L19606 (2005).

    Article  Google Scholar 

  67. Biegala, I. C., Not, F., Vaulot, D. & Simon, N. Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. J. Appl. Environ. Microbiol. 69, 5519–5529 (2003).

    Article  CAS  Google Scholar 

  68. Fuhrman, J. A. & Azam, F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66, 109–120 (1982).

    Article  Google Scholar 

  69. Ducklow, H. W. The bacterial component of the oceanic euphotic zone. FEMS Microbiol. Ecol. 30, 1–10 (1999).

    Article  CAS  Google Scholar 

  70. Karl, D. M. Selected nucleic acid precursors in studies of aquatic microbial ecology. Appl. Environ. Microbiol. 44, 891–902 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Richardson, L. Weather Prediction by Numerical Process (Cambridge Univ. Press, Cambridge, 1922).

    Google Scholar 

  74. Purcell, E. M. Life at low Reynolds Number. Am. J. Phys. 45, 3–11 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

The authors' work on this topic was supported by the National Science Foundation (grant number OCE 0241023 PGF) and National Aeronautics and Space Administration (grant number 05-TEB/05-33 MJO and PGF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Falkowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul G. Falkowski's homepage

MODIS Land Rapid Response Team

Glossary

Aeolian

The continentally derived nutrient input that is transported by the wind.

Ma

(Mega-annum). A unit of time that is equal to 1 million (106) years.

Oligotrophic

An aquatic environment that has low levels of nutrient and algal photosynthetic production (for example, high mountain lakes or the open ocean).

Primary producer

An organism that is the original source of organic material in an ecosystem — plants, algae or chemosynthetic microorganisms.

Riverine

The continentally derived nutrient input that is transported by rivers and streams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkowski, P., Oliver, M. Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5, 813–819 (2007). https://doi.org/10.1038/nrmicro1751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing