Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Does efficiency sensing unify diffusion and quorum sensing?

Abstract

Quorum sensing faces evolutionary problems from non-producing or over-producing cheaters. Such problems are circumvented in diffusion sensing, an alternative explanation for quorum sensing. However, both explanations face the problems of signalling in complex environments such as the rhizosphere where, for example, the spatial distribution of cells can be more important for sensing than cell density, which we show by mathematical modelling. We argue that these conflicting concepts can be unified by a new hypothesis, efficiency sensing, and that some of the problems associated with signalling in complex environments, as well as the problem of maintaining honesty in signalling, can be avoided when the signalling cells grow in microcolonies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: What cells sense.
Figure 2: The rhizosphere as an example of a complex habitat.
Figure 3: The geometric relationship of DS and QS as extreme cases of ES.
Figure 4: Spatial distribution and cell density.

Similar content being viewed by others

References

  1. Rosenberg, E., Keller, K. H. & Dworkin, M. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129, 770–777 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Matz, C. & Kjelleberg, S. Off the hook — how bacteria survive protozoan grazing. Trends Microbiol. 13, 302–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA. 98, 11621–11626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaiser, D. & Welch, R. Dynamics of fruiting body morphogenesis. J. Bacteriol. 186, 919–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nealson, K. H., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–322 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eberhard, A. Inhibition and activation of bacterial luciferase synthesis. J. Bacteriol. 109, 1101–1105 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. & Salmond, G. P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Manefield, M. & Turner, S. L. Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology 148, 3762–3764 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Dunny, G. M. & Leonard, B. A. B. Cell–cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51, 527–564 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Lyon, G. J. & Novick, R. P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 1389–1403 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Xavier, K. B. & Bassler, B. L. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6, 191–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winans, S. C. Reciprocal regulation of bioluminescence and type III protein secretion in Vibrio harveyi and Vibrio parahaemolyticus in response to diffusible chemical signals. J. Bacteriol. 186, 3674–3676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Schuhegger, R. et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 29, 909–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Coetser, S. E. & Cloete, T. E. Biofouling and biocorrosion in industrial water systems. Crit. Rev. Microbiol. 31, 213–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Loh, J., Pierson, E. A., Pierson, L. S., III, Stacey, G. & Chatterjee, A. Quorum sensing in plant-associated bacteria. Curr. Opin. Plant Biol. 5, 285–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Henke, J. M. & Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Winzer, K., Hardie, K. R. & Williams, P. Bacterial cell-to-cell communication: sorry, can't talk now — gone to lunch! Curr. Opin. Microbiol. 5, 216–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, J., Daniel, R., Wagner-Dobler, I. & Zeng, A. P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol. 4, 36 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Doherty, N., Holden, M. T. G., Qazi, S. N., Williams, P. & Winzer, K. Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J. Bacteriol. 188, 2885–2897 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaufmann, G. F. et al. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl Acad. Sci. USA 102, 309–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Schloter, M., Lebuhn, M., Heulin, T. & Hartmann, A. Ecology and evolution of bacterial microdiversity. FEMS Microbiol. Rev. 24, 647–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Somers, E., Vanderleyden, J. & Srinivasan, M. Rhizosphere bacterial signalling: a love parade beneath our feet. Crit. Rev. Microbiol. 30, 205–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Berg, G., Eberl, L. & Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7, 1673–1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Müller, J., Kuttler, C., Hense, B. A., Rothballer, M. & Hartmann, A. Cell–cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 53, 672–702 (2006).

    Article  PubMed  Google Scholar 

  33. Egland, P. G., Palmer, R. J. Jr. & Kolenbrander, P. E. Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA 101, 16917–16922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Greenberg, E. P., Hastings, J. W. & Ulitzur, S. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch. Microbiol. 120, 87–91 (1979).

    Article  CAS  Google Scholar 

  36. Muscholl-Silberhorn, A., Samberger, E. & Wirth, R. Why does Staphylococcus aureus secrete an Enterococcus faecalis-specific pheromone? FEMS Microbiol. Lett. 157, 261–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Pierson, E. A., Wood, D. W., Cannon, J. A., Blachere, F. M. & Pierson, L. S. I. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant-Microbe Interact. 11, 1078–1084 (1998).

    Article  CAS  Google Scholar 

  38. Cha, C., Gao, P., Chen, Y. C., Shaw, P. D. & Farrand, S. K. Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 11, 1119–1129 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Elasri, M. et al. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl. Environ. Microbiol. 67, 1198–1209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steidle, A. et al. Visualization of N-acylhomoserine lactone-mediated cell–cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67, 5761–5770 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riedel, K. et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147, 3249–3262 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lewenza, S., Visser, M. B. & Sokol, P. A. Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can. J. Microbiol. 48, 707–716 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Mathesius, U. et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl Acad. Sci. USA 100, 1444–1449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shiner, E. K., Rumbaugh, K. P. & Williams, S. C. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev. 29, 935–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006).

    Article  CAS  Google Scholar 

  46. Mason, V. P., Markx, G. H., Thompson, I. P., Andrews, J. S. & Manefield, M. Colonial architecture in mixed species assemblages affects AHL mediated gene expression. FEMS Microbiol. Lett. 244, 121–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Torsvik, V., Goksoyr, J. & Daae, F. L. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dykhuizen, D. E. Santa Rosalia revisited: Why are there so many species of bacteria? Antonie van Leeuwenhoek 73, 25–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hong, S. H., Bunge, J., Jeon, S. O. & Epstein, S. S. Predicting microbial species richness. Proc. Natl Acad. Sci. USA 103, 117–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Angelo-Picard, C., Faure, D., Penot, I. & Dessaux, Y. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ. Microbiol. 7, 1796–1808 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. Burgess, N. A. et al. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology 148, 763–772 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Gantner, S. et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56, 188–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Givskov, M. et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618–6622 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holden, M. T. et al. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol. 33, 1254–1266 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Rasmussen, T. B. & Givskov, M. Quorum sensing inhibitors: a bargain of effects. Microbiology 152, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, J. J., Han, J. I., Zhang, L. H. & Leadbetter, J. R. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69, 5941–5949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, Y. H. et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47, 849–860 (2003).

    Article  PubMed  Google Scholar 

  60. Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. & Greenberg, E. P. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl Acad. Sci. USA 101, 3587–3590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rothfork, J. M. et al. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proc. Natl Acad. Sci. USA 101, 13867–13872 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, F. et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579, 3713–3717 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Y. J. & Leadbetter, J. R. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71, 1291–1299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell–cell communication. Nature 437, 750–753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Teplitski, M., Robinson, J. B. & Bauer, W. D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 13, 637–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Degrassi, G. et al. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr. Microbiol. 45, 250–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Teplitski, M. et al. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol. 134, 137–146 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Otto, M., Echner, H., Voelter, W. & Gö tz, F. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 1957–1960 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sturme, M. H. et al. Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie van Leeuwenhoek 81, 233–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Amarasekare, P. Interference competition and species coexistence. Proc. Biol. Sci. 269, 2541–2550 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mok, K. C., Wingreen, N. S. & Bassler, B. L. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J. 22, 870–881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  Google Scholar 

  73. Velicer, G. J. Social strife in the microbial world. Trends Microbiol. 11, 330–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Travisano, M. & Velicer, G. J. Strategies of microbial cheater control. Trends Microbiol. 12, 72–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Denison, R. F. & Kiers, E. T. Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol. Lett. 237, 187–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Kreft, J.-U. Conflicts of interest in biofilms. Biofilms 1, 265–276 (2004).

    Article  Google Scholar 

  77. Shompole, S. et al. Biphasic intracellular expression of Staphylococcus aureus virulence factors and evidence for Agr-mediated diffusion sensing. Mol. Microbiol. 49, 919–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Heurlier, K., Denervaud, V. & Haas, D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 93–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001).

    Article  PubMed  Google Scholar 

  80. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Denison, R. F. et al. Cooperation in the rhizosphere and the 'free rider' problem. Ecology 84, 838–845 (2003).

    Article  Google Scholar 

  82. Foster, K. R. Hamiltonian medicine: why the social lives of pathogens matter. Science 308, 1269–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Charlton, T. S. et al. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ. Microbiol. 2, 530–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50, 61–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Klausen, M., Gjermansen, M., Kreft, J.-U. & Tolker-Nielsen, T. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol. Lett. 261, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  91. Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Ward, J. P. et al. Mathematical modelling of quorum sensing in bacteria. IMA J. Math. Appl. Med. Biol. 18, 263–292 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Schaefer, A. L., Hanzelka, B. L., Parsek, M. R. & Greenberg, E. P. Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol. 305, 288–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Lachmann, M., Szamado, S. & Bergstrom, C. T. Cost and conflict in animal signals and human language. Proc. Natl Acad. Sci. USA 98, 13189–13194 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brown, S. P. & Johnstone, R. A. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc. R. Soc. London B 268, 961–965 (2001).

    Article  CAS  Google Scholar 

  96. Haas, D. Cost of cell-cell signalling in Pseudomonas aeruginosa: why it can pay to be signal-blind. Nature Reviews Microbiology [online] (2006).

    Google Scholar 

  97. Heurlier, K. et al. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol. 187, 4875–4883 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Callahan, S. M. & Dunlap, P. V. LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol. 182, 2811–2822 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barak, M. & Ulitzur, S. The induction of bacterial bioluminescence system on solid medium. Curr. Microbiol. 5, 299–301 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dieter Haas for discussing the fitness effects of signal-blind and other mutants. We apologize to the authors of the many interesting studies that we could not discuss due to space limitations. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through the collaborative research centre on 'Singular Phenomena and Scaling in Mathematical Models' and the GSF - National Research Center for Environment and Health for supporting the project network 'Molecular Interactions in the Rhizosphere'.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Burkhard A. Hense or Jan-Ulrich Kreft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Porphyromonas gingivalis

Pseudomonas putida

Staphylococcus aureus

Vibrio harveyi

FURTHER INFORMATION

Anton Hartmann's laboratory

Jan Kreft's homepage

Molecular interactions in the rhizosphere project

Glossary

Accounting cost

Accounting cost represents the total amount of money spent on buying or producing something.

Advection

The transport of material with the flow of, for example, water or wind; more generally, the motion of a conserved quantity in a velocity field.

AHL

N-acyl-L-homoserine lactone. A class of small autoinducers produced by a considerable number of Proteobacteria, consisting of a homoserine lactone ring with a Nlinked acyl side chain of variable length (C4–C20) and functional groups (mostly hydroxyl- or oxo- groups at the C3 position).

AI-2

Autoinducer 2. Derived from the methyl-donor S-adenosylmethionine, which forms S-adenosylhomocysteine after the transfer of the methyl group. In some bacteria this is converted to S-ribosylhomocysteine, which is converted by the enzyme LuxS to homocysteine and 4,5-dihydroxy-2,3-pentanedione, which spontaneously cyclizes into several furanones in chemical equilibrium, collectively referred to as AI-2.

Autoinducer

A molecule secreted by a bacterial population that accumulates in the growth medium and induces genes in that same bacterial population.

Cheater

An individual who obtains more benefits from a collectively produced public good relative to its own contribution.

Chemical manipulation

If the chemical is produced for the purpose of changing the behaviour of the receiver but this change is detrimental for the receiver, this is chemical manipulation.

Coincidence detection

A situation involving two independent inputs and an output that is activated only when signals are received at the same time at both inputs.

Communication

True communication or signalling requires that the sender, having incurred costs in signal production, benefits from the response of the receiver and that the receiver in turn benefits from its own costly response to the signal. Otherwise, it is not a signal, but a cue or chemical manipulation.

Cooperation

A proportional contribution by individuals to a collectively produced public good.

Cue

If bacteria use the information from chemicals produced for purposes other than communication, the chemical is not a signal but a cue.

Diffusion

The movement of particles from a higher to lower concentration, in which the net flux of the particles is equal to their diffusivity multiplied by the negative concentration gradient.

Diffusion sensing

Determines whether secreted molecules move rapidly away from the cell, allowing cells to regulate the secretion of degradative enzymes and other effectors to minimize losses owing to extracellular diffusion and mixing.

Direct fitness

The component of fitness that is gained through reproduction in contrast to indirect fitness, which is the component of fitness that is gained from aiding the reproduction of non-descendant relatives.

Effector

A substance that is produced and released into the environment for its ultimate effect, such as exoenzymes, siderophores, antibiotics, biosurfactants and virulence factors. Signals that lead to the production of such compounds are not themselves effectors.

Honesty

An honest signal is one that does not misrepresent the world. If the sender has an incentive to convey wrong information, dishonest signals might evolve that manipulate the receivers behaviour to benefit the sender.

Interference

A costly activity with a negative effect on the competitor, which does not act indirectly through resources.

Kin discrimination

When behaviours are directed towards individuals depending on their relatedness to the actor.

Kin selection

Favours traits because of their beneficial effects on the fitness of relatives.

Occam's razor

A principle stating that the explanation of any phenomenon should make as few assumptions as possible. When multiple competing theories have equal predictive powers, the principle recommends selecting the explanation that makes the fewest assumptions and postulates the fewest hypothetical entities.

Opportunity cost

Opportunity cost, also referred to as economic cost, is the cost of something in terms of an opportunity forgone. For example, if a city decides to build a hospital on vacant land that it owns, the opportunity cost is the best other thing that could have been done with the land and construction funds instead.

Pheromone

A chemical produced by an organism to transmit a message to other members of the same species, affecting their behaviour or physiology.

Phylloplane

Aerial plant surfaces, such as the stem, leaves and flowers.

Public good

Any fitness-enhancing resource that is accessible to multiple individuals within a local group.

Quorum sensing

Determines whether a sufficient cell density has been reached to switch a set of behaviours of a whole population, and synchronizes this switching among all individuals of the population.

Rhizosphere

The rhizosphere is the root surface (also known as the rhizoplane) and the surrounding soil influenced by plant roots, as opposed to the bulk soil.

Signal

Any act, structure or chemical emission that elicits a response from the receiver and that evolved because of this effect and is effective because the receiver's response has also evolved. Note that the diffusible signals typically used by bacteria blur the distinction between emitter and receiver. In diffusion sensing, the signal will even be received only by the sender. As such 'self-signalling' does not preclude an evolved response, we use signal and signalling in a broader sense in this article that includes 'self-signalling'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hense, B., Kuttler, C., Müller, J. et al. Does efficiency sensing unify diffusion and quorum sensing?. Nat Rev Microbiol 5, 230–239 (2007). https://doi.org/10.1038/nrmicro1600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing