Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host factors exploited by retroviruses

Key Points

  • Retroviruses exploit a vast array of host cellular proteins during their replication. Every step in the viral life cycle requires a distinct set of these host factors.

  • Host factors provide attractive targets for therapeutic intervention. The cellular genes encoding these factors would not rapidly mutate to produce drug-resistant variants. Nonspecific inhibition of host machinery, however, could prove toxic.

  • Retroviruses often use transport systems that are involved in the movement of cellular cargoes using cytoskeletal motors, or in vesicle trafficking.

  • Different retroviruses use different sets of host factors.

  • Viruses often use redundant pathways, or use alternative pathways present in particular cell types.

  • Sometimes the viruses disrupt a host process or molecular machine for the purposes of virus replication. For example, the ESCRT machinery, which is normally involved in protein sorting to the endosome, is relocated to the plasma membrane by enveloped viruses and exploited for their budding and release.

  • Genomic screens indicate that the total number of host factors needed by viruses is enormous and that current information about these factors and their roles in virus replication is still incomplete.

Abstract

Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The retroviral life cycle.
Figure 2: Alternative routes of retroviral entry.
Figure 3: Alternative routes for nuclear entry of retroviral DNA.
Figure 4: Gag trafficking during virion assembly and release.

Similar content being viewed by others

References

  1. Pelkmans, L. Viruses as probes for systems analysis of cellular signalling, cytoskeleton reorganization and endocytosis. Curr. Opin. Microbiol. 8, 331–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006). A superb review of viral entry into the cell. Covers the known routes of uptake and entry, and the host machinery that is likely to be involved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sommerfelt, M. A. Retrovirus receptors. J. Gen. Virol. 80, 3049–3064 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Overbaugh, J., Miller, A. D. & Eiden, M. V. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol. Mol. Biol. Rev. 65, 371–389 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, Y. HIV-1 gene expression: lessons from provirus and non-integrated DNA. Retrovirology 1, 13 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coyne, C. B. & Bergelson, J. M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, J. L. & Hope, T. J. Intracellular trafficking of retroviral vectors: obstacles and advances. Gene Ther. 12, 1667–1678 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. & Mothes, W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317–325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iyengar, S., Hildreth, J. E. & Schwartz, D. H. Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J. Virol. 72, 5251–5255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kizhatil, K. & Albritton, L. M. Requirements for different components of the host cell cytoskeleton distinguish ecotropic murine leukemia virus entry via endocytosis from entry via surface fusion. J. Virol. 71, 7145–7156 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Katen, L. J., Januszeski, M. M., Anderson, W. F., Hasenkrug, K. J. & Evans, L. H. Infectious entry by amphotropic as well as ecotropic murine leukemia viruses occurs through an endocytic pathway. J. Virol. 75, 5018–5026 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mothes, W., Boerger, A. L., Narayan, S., Cunningham, J. M. & Young, J. A. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103, 679–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Matarrese, P. & Malorni, W. Human immunodeficiency virus (HIV)-1 proteins and cytoskeleton: partners in viral life and host cell death. Cell Death Differ. 12 (Suppl. 1), 932–941 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Campbell, E. M., Nunez, R. & Hope, T. J. Disruption of the actin cytoskeleton can complement the ability of Nef to enhance human immunodeficiency virus type 1 infectivity. J. Virol. 78, 5745–5755 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chazal, N., Singer, G., Aiken, C., Hammarskjold, M. L. & Rekosh, D. Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J. Virol. 75, 4014–4018 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vidricaire, G., Imbeault, M. & Tremblay, M. J. Endocytic host cell machinery plays a dominant role in intracellular trafficking of incoming human immunodeficiency virus type 1 in human placental trophoblasts. J. Virol. 78, 11904–11915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vidricaire, G. & Tremblay, M. J. Rab5 and Rab7, but not ARF6, govern the early events of HIV-1 infection in polarized human placental cells. J. Immunol. 175, 6517–6530 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Daecke, J., Fackler, O. T., Dittmar, M. T. & Krausslich, H. G. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79, 1581–1594 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dvorin, J. D. & Malim, M. H. Intracellular trafficking of HIV-1 cores: journey to the center of the cell. Curr. Top. Microbiol. Immunol. 281, 179–208 (2003).

    CAS  PubMed  Google Scholar 

  20. Nisole, S. & Saib, A. Early steps of retrovirus replicative cycle. Retrovirology 1, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lehmann-Che, J. & Saib, A. Early stages of HIV replication: how to hijack cellular functions for a successful infection. AIDS Rev. 6, 199–207 (2004).

    PubMed  Google Scholar 

  22. Campbell, E. M. & Hope, T. J. Gene therapy progress and prospects: viral trafficking during infection. Gene Ther. 12, 1353–1359 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Bukrinskaya, A., Brichacek, B., Mann, A. & Stevenson, M. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113–2125 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Komano, J., Miyauchi, K., Matsuda, Z. & Yamamoto, N. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol. Biol. Cell 15, 5197–5207 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leung, J. et al. Interaction of Moloney murine leukemia virus matrix protein with IQGAP. EMBO J. 25, 2155–2166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noritake, J., Watanabe, T., Sato, K., Wang, S. & Kaibuchi, K. IQGAP1: a key regulator of adhesion and migration. J. Cell Sci. 118, 2085–2092 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, W. et al. Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein. J. Virol. 72, 6898–6901 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang, Y. et al. Cellular motor protein KIF-4 associates with retroviral Gag. J. Virol. 73, 10508–10513 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Forshey, B. M., von Schwedler, U., Sundquist, W. I. & Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luban, J., Bossolt, K. A., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Braaten, D., Franke, E. K. & Luban, J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J. Virol. 70, 3551–3560 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sokolskaja, E., Sayah, D. M. & Luban, J. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J. Virol. 78, 12800–12808 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nisole, S., Stoye, J. P. & Saib, A. TRIM family proteins: retroviral restriction and antiviral defence. Nature Rev. Microbiol. 3, 799–808 (2005).

    Article  CAS  Google Scholar 

  35. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greber, U. F. & Way, M. A superhighway to virus infection. Cell 124, 741–754 (2006). An excellent review of the intracellular transport of viruses by host cytoskeletal-associated machinery.

    Article  CAS  PubMed  Google Scholar 

  37. Petit, C. et al. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J. Cell Sci. 116, 3433–3442 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Saib, A., Puvion-Dutilleul, F., Schmid, M., Peries, J. & de The, H. Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J. Virol. 71, 1155–1161 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Leopold, P. L. & Pfister, K. K. Viral strategies for intracellular trafficking: motors and microtubules. Traffic 7, 516–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Naghavi, M. H., Hatziioannou, T., Gao, G. & Goff, S. P. Overexpression of fasciculation and elongation protein ζ-1 (FEZ1) induces a post-entry block to retroviruses in cultured cells. Genes Dev. 19, 1105–1115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, H. & Engelman, A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc. Natl Acad. Sci. USA 95, 15270–15274 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suzuki, Y. & Craigie, R. Regulatory mechanisms by which barrier-to-autointegration factor blocks autointegration and stimulates intermolecular integration of Moloney murine leukemia virus preintegration complexes. J. Virol. 76, 12376–12380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, C. W. & Engelman, A. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J. Virol. 77, 5030–5036 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mansharamani, M. et al. Barrier-to-autointegration factor BAF binds p55 Gag and matrix and is a host component of human immunodeficiency virus type 1 virions. J. Virol. 77, 13084–13092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, M. S. & Craigie, R. A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl Acad. Sci. USA 95, 1528–1533 (1998). This important paper describes the isolation and cloning of BAF-1, the barrier-to-autointegration factor, which is required for retroviral PIC integration into chromosomal DNA in trans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng, R. et al. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc. Natl Acad. Sci. USA 97, 8997–9002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Umland, T. C., Wei, S. Q., Craigie, R. & Davies, D. R. Structural basis of DNA bridging by barrier-to-autointegration factor. Biochemistry 39, 9130–9138 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Shumaker, D. K., Lee, K. K., Tanhehco, Y. C., Craigie, R. & Wilson, K. L. LAP2 binds to BAF. DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J. 20, 1754–1764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suzuki, Y., Yang, H. & Craigie, R. LAP2α and BAF collaborate to organize the Moloney murine leukemia virus preintegration complex. EMBO J. 23, 4670–4678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacque, J. M. & Stevenson, M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 441, 641–645 (2006). The recent discovery that emerin, an integral inner-nuclear-envelope protein, is required for HIV-1 infection and for targeting the incoming PIC to chromatin.

    Article  CAS  PubMed  Google Scholar 

  51. Lewis, P., Hensel, M. & Emerman, M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11, 3053–3058 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lewis, P. F. & Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Weinberg, J. B., Matthews, T. J., Cullen, B. R. & Malim, M. H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174, 1477–1482 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Roe, T., Reynolds, T. C., Yu, G. & Brown, P. O. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamashita, M. & Emerman, M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J. Virol. 78, 5670–5678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamashita, M. & Emerman, M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog. 1, e18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bowerman, B., Brown, P. O., Bishop, J. M. & Varmus, H. E. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 3, 469–478 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Fassati, A. & Goff, S. P. Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J. Virol. 73, 8919–8925 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fassati, A. & Goff, S. P. Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J. Virol. 75, 3626–3635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller, M. D., Farnet, C. M. & Bushman, F. D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 71, 5382–5390 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuan, B., Li, X. & Goff, S. P. Mutations altering the Moloney murine leukemia virus p12 Gag protein affect virion production and early events of the virus life cycle. EMBO J. 18, 4700–4710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuan, B., Fassati, A., Yueh, A. & Goff, S. P. Characterization of Moloney murine leukemia virus p12 mutants blocked during early events of infection. J. Virol. 76, 10801–10810 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yueh, A. & Goff, S. P. Phosphorylated serine residues and an arginine-rich domain of the moloney murine leukemia virus p12 protein are required for early events of viral infection. J. Virol. 77, 1820–1829 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yueh, A. et al. Interaction of Moloney murine leukemia virus capsid with Ubc9 and PIASy mediates SUMO-1 addition required early in infection. J. Virol. 80, 342–352 (2006). Reports the finding that the MoMLV capsid protein is SUMOylated by Ubc9 and PIASy, and that the modification of the incoming virus is required for nuclear import of the PIC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, S. K., Nagashima, K. & Hu, W. S. Cooperative effect of gag proteins p12 and capsid during early events of murine leukemia virus replication. J. Virol. 79, 4159–4169 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ao, Z., Yao, X. & Cohen, E. A. Assessment of the role of the central DNA flap in human immunodeficiency virus type 1 replication by using a single-cycle replication system. J. Virol. 78, 3170–3177 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dvorin, J. D. et al. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J. Virol. 76, 12087–12096 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Limon, A., Nakajima, N., Lu, R., Ghory, H. Z. & Engelman, A. Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. J. Virol. 76, 12078–12086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Petit, C., Schwartz, O. & Mammano, F. The karyophilic properties of human immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA. J. Virol. 74, 7119–7126 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fassati, A., Gorlich, D., Harrison, I., Zaytseva, L. & Mingot, J. M. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J. 22, 3675–3685 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zielske, S. P. & Stevenson, M. Importin 7 might be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages. J. Virol. 79, 11541–11546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ebina, H., Aoki, J., Hatta, S., Yoshida, T. & Koyanagi, Y. Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA. Microbes Infect. 6, 715–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Zaitseva, L., Myers, R. & Fassati, A. tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes. PLoS Biol. 4, e332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Maertens, G. et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J. Biol. Chem. 278, 33528–33539 (2003). Documents the interaction of HIV-1 integrase with LEDGF, and shows that LEDGF is essential for efficient infection. The first report of an essential host factor for a retroviral integrase.

    Article  CAS  PubMed  Google Scholar 

  76. Llano, M., Delgado, S., Vanegas, M. & Poeschla, E. M. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J. Biol. Chem. 279, 55570–55577 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Emiliani, S. et al. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem. 280, 25517–25523 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Llano, M. et al. An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Llano, M. et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J. Virol. 78, 9524–9537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R. & Goff, S. P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266, 2002–2006 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Li, L., Farnet, C. M., Anderson, W. F. & Bushman, F. D. Modulation of activity of Moloney murine leukemia virus preintegration complexes by host factors in vitro. J. Virol. 72, 2125–21231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hindmarsh, P. et al. HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro. J. Virol. 73, 2994–3003 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Farnet, C. M. & Bushman, F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88, 483–492 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Li, L. et al. Retroviral cDNA integration: stimulation by HMG I family proteins. J. Virol. 74, 10965–10974 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mulder, L. C., Chakrabarti, L. A. & Muesing, M. A. Interaction of HIV-1 integrase with DNA repair protein hRad18. J. Biol. Chem. 277, 27489–27493 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Haraguchi, T. et al. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell Sci. 114, 4575–4585 (2001).

    CAS  PubMed  Google Scholar 

  87. Lee, K. K. et al. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 114, 4567–4573 (2001).

    CAS  PubMed  Google Scholar 

  88. Bengtsson, L. & Wilson, K. L. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. Mol. Biol. Cell 17, 1154–1163 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hirano, Y. et al. Dissociation of emerin from barrier-to-autointegration factor is regulated through mitotic phosphorylation of emerin in a xenopus egg cell-free system. J. Biol. Chem. 280, 39925–39933 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Daniel, R., Katz, R. A. & Skalka, A. M. A role for DNA-PK in retroviral DNA integration. Science 284, 644–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Smith, J. A. & Daniel, R. Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem. Biol. 1, 217–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Daniel, R. et al. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc. Natl Acad. Sci. USA 100, 4778–4783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Daniel, R. et al. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J. Virol. 78, 8573–8581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ariumi, Y., Turelli, P., Masutani, M. & Trono, D. DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J. Virol. 79, 2973–2978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dehart, J. L. et al. The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J. Virol. 79, 1389–1396 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lau, A. et al. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nature Cell Biol. 7, 493–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Yankulov, K. & Bentley, D. Transcriptional control: Tat cofactors and transcriptional elongation. Curr. Biol. 8, R447–R449 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Quaranta, M. G. et al. HIV-1 Nef triggers Vav-mediated signaling pathway leading to functional and morphological differentiation of dendritic cells. FASEB J. 17, 2025–2036 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Fackler, O. T., Luo, W., Geyer, M., Alberts, A. S. & Peterlin, B. M. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol. Cell 3, 729–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Bogerd, H. P., Fridell, R. A., Madore, S. & Cullen, B. R. Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82, 485–494 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Fridell, R. A., Bogerd, H. P. & Cullen, B. R. Nuclear export of late HIV-1 mRNAs occurs via a cellular protein export pathway. Proc. Natl Acad. Sci. USA 93, 4421–4424 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zolotukhin, A. S. & Felber, B. K. Mutations in the nuclear export signal of human ran-binding protein RanBP1 block the Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1. J. Biol. Chem. 272, 11356–11360 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Reddy, T. R. et al. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nature Med. 5, 635–642 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Bray, M. et al. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev- independent. Proc. Natl Acad. Sci. USA 91, 1256–1260 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zolotukhin, A. S., Valentin, A., Pavlakis, G. N. & Felber, B. K. Continuous propagation of RRE and Rev RRE human immunodeficiency virus type 1 molecular clones containing a cis-acting element of simian retrovirus type 1 in human peripheral blood lymphocytes. J. Virol. 68, 7944–7952 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tang, H., Gaietta, G. M., Fischer, W. H., Ellisman, M. H. & Wong-Staal, F. A cellular cofactor for the constitutive transport element of type D retrovirus. Science 276, 1412–1415 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Reddy, T. R., Tang, H., Xu, W. & Wong-Staal, F. Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA. Oncogene 19, 3570–3575 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Swanson, C. M., Puffer, B. A., Ahmad, K. M., Doms, R. W. & Malim, M. H. Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J. 23, 2632–2640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lopez-Lastra, M., Gabus, C. & Darlix, J. L. Characterization of an internal ribosomal entry segment within the 5′ leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors. Hum. Gene Ther. 8, 1855–1865 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Deffaud, C. & Darlix, J. L. Rous sarcoma virus translation revisited: characterization of an internal ribosome entry segment in the 5′ leader of the genomic RNA. J. Virol. 74, 11581–11588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deffaud, C. & Darlix, J. L. Characterization of an internal ribosomal entry segment in the 5′ leader of murine leukemia virus env RNA. J. Virol. 74, 846–850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brasey, A. et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J. Virol. 77, 3939–3949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ventoso, I., Blanco, R., Perales, C. & Carrasco, L. HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proc. Natl Acad. Sci. USA 98, 12966–12971 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Buck, C. B. et al. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J. Virol. 75, 181–191 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Orlova, M., Yueh, A., Leung, J. & Goff, S. P. Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115, 319–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Yuan, X., Yu, X., Lee, T. H. & Essex, M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J. Virol. 67, 6387–6394 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rudner, L. et al. Dynamic fluorescent imaging of human immunodeficiency virus type 1 Gag in live cells by biarsenical labeling. J. Virol. 79, 4055–4065 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Neil, S. J., Eastman, S. W., Jouvenet, N. & Bieniasz, P. D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Holm, K., Weclewicz, K., Hewson, R. & Suomalainen, M. Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55gag associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J. Virol. 77, 4805–4817 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lindwasser, O. W. & Resh, M. D. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75, 7913–7924 (2001). The myristyl switch: shows that multimerization of Gag promotes a conformational change that exposes the N terminus of MA and increases membrane affinity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ono, A. & Freed, E. O. Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. J. Virol. 78, 1552–1563 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol. 162, 443–455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003). Supports the proposal that HIV-1 virions can bud into intracellular vesicles, the exosomes, that are carried to the plasma membrane and released outside the cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nguyen, D. G., Booth, A., Gould, S. J. & Hildreth, J. E. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem. 278, 52347–52354 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Perlman, M. & Resh, M. D. Identification of an intracellular trafficking and assembly pathway for HIV-1 Gag. Traffic 7, 731–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Raposo, G. et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3, 718–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Dong, X. et al. AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 120, 663–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Murray, J. L. et al. Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J. Virol. 79, 11742–11751 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Spearman, P., Horton, R., Ratner, L. & Kuli-Zade, I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J. Virol. 71, 6582–6592 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Paillart, J. C. & Gottlinger, H. G. Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of Gag membrane targeting. J. Virol. 73, 2604–2612 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ono, A., Demirov, D. & Freed, E. O. Relationship between human immunodeficiency virus type 1 Gag multimerization and membrane binding. J. Virol. 74, 5142–5150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Resh, M. D. A myristoyl switch regulates membrane binding of HIV-1 Gag. Proc. Natl Acad. Sci. USA 101, 417–418 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zimmerman, C. et al. Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415, 88–92 (2002). The first report of the role of HP68/ACE1 in multimerization and assembly of HIV-1 Gag proteins to form virions.

    Article  CAS  PubMed  Google Scholar 

  134. Lingappa, J. R., Dooher, J. E., Newman, M. A., Kiser, P. K. & Klein, K. C. Basic residues in the nucleocapsid domain of Gag are required for interaction of HIV-1 Gag with ABCE1 (HP68), a cellular protein important for HIV-1 capsid assembly. J. Biol. Chem. 281, 3773–3784 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lodge, R., Lalonde, J. P., Lemay, G. & Cohen, E. A. The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J. 16, 695–705 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bhattacharya, J., Repik, A. & Clapham, P. R. Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J. Virol. 80, 5292–5300 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sfakianos, J. N. & Hunter, E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4, 671–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Sfakianos, J. N., LaCasse, R. A. & Hunter, E. The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic 4, 660–670 (2003). Back-to-back papers that report the transport of the M-PMV Gag protein to the pericentriolar region by dynein motors, and the interaction of Gag with Env to promote its release.

    Article  CAS  PubMed  Google Scholar 

  140. Nash, M. A., Meyer, M. K., Decker, G. L. & Arlinghaus, R. B. A subset of Pr65gag is nucleus associated in murine leukemia virus-infected cells. J. Virol. 67, 1350–1356 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Scheifele, L. Z., Garbitt, R. A., Rhoads, J. D. & Parent, L. J. Nuclear entry and CRM1-dependent nuclear export of the Rous sarcoma virus Gag polyprotein. Proc. Natl Acad. Sci. USA 99, 3944–3949 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Scheifele, L. Z., Ryan, E. P. & Parent, L. J. Detailed mapping of the nuclear export signal in the Rous sarcoma virus Gag protein. J. Virol. 79, 8732–8741 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Butterfield-Gerson, K. L., Scheifele, L. Z., Ryan, E. P., Hopper, A. K. & Parent, L. J. Importin-β family members mediate a retrovirus Gag nuclear entry via interactions with matrix and nucleocapsid. J. Virol. 80, 1798–1806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Levesque, K. et al. Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 7, 1177–1193 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Lopez-Verges, S. et al. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc. Natl Acad. Sci. USA 103, 14947–14952 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003). A comprehensive analysis of interactions among the many components of the ESCRT machinery, and a summary of their interactions with viral Gag proteins.

    Article  CAS  PubMed  Google Scholar 

  150. Ott, D. E. et al. Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J. Virol. 72, 2962–2968 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gottwein, E. & Krausslich, H. G. Analysis of human immunodeficiency virus type 1 Gag ubiquitination. J. Virol. 79, 9134–9144 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Spidel, J. L. et al. Lysines close to the Rous sarcoma virus late domain critical for budding. J. Virol. 78, 10606–10616 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Okumura, A., Lu, G., Pitha-Rowe, I. & Pitha, P. M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl Acad. Sci. USA 103, 1440–1445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J. Biol. Chem. 281, 23083–23091 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, M. Q. et al. Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production. J. Biol. 3, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ryzhova, E. V. et al. Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J. Virol. 80, 2694–2704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Franke, E. K., Yuan, H. E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  159. Gurer, C., Cimarelli, A. & Luban, J. Specific incorporation of heat shock protein 70 family members into primate lentiviral virions. J. Virol. 76, 4666–4670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yung, E. et al. Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nature Med. 7, 920–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Halwani, R. et al. Cellular distribution of Lysyl-tRNA synthetase and its interaction with Gag during human immunodeficiency virus type 1 assembly. J. Virol. 78, 7553–7564 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ott, D. E. et al. Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J. Virol. 70, 7734–7743 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Coskun, A. K., van Maanen, M., Nguyen, V. & Sutton, R. E. Human chromosome 2 carries a gene required for production of infectious human immunodeficiency virus type 1. J. Virol. 80, 3406–3415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Scholes, D. T., Banerjee, M., Bowen, B. & Curcio, M. J. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159, 1449–1465 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Griffith, J. L. et al. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics 164, 867–879 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Aye, M. et al. Host factors that affect Ty3 retrotransposition in Saccharomyces cerevisiae. Genetics 168, 1159–1176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Irwin, B. et al. Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res. 15, 641–654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Kikonyogo, A. et al. Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for Gag budding from cells. Proc. Natl Acad. Sci. USA 98, 11199–11204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168, 89–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001). References 172 and 173 were the first reports of the interaction of Tsg101 with the L domain of HIV-1 Gag and demonstration of its requirement in HIV-1 budding and release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Eastman, S. W., Martin-Serrano, J., Chung, W., Zang, T. & Bieniasz, P. D. Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J. Biol. Chem. 280, 628–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA 100, 12414–12419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The themes of viral trafficking presented in this review arose often at a recent Keystone Symposium held in Santa Fe, New Mexico and at the annual Retrovirus meeting at Cold Spring Harbor, USA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

HIV-1

M-PMV

MLV

Rous sarcoma virus

VSV

FURTHER INFORMATION

Stephen P. Goff's homepage

Glossary

Provirus

Retrovirus particles contain an RNA genome, but after infection the RNA is reverse transcribed into DNA, which is inserted into the host-cell genome to form the integrated viral DNA, or provirus. The proviral DNA is a latent form of the virus genome that can be transcribed to produce infectious virus.

Co-receptor

The retroviral envelope proteins facilitate viral entry by binding to specific proteins on the cell surface and fusing the viral and host membranes. In HIV-1, the envelope protein requires two cell proteins: a primary receptor for the initial binding (CD4), and a secondary co-receptor for membrane fusion. Other retroviruses use a single protein for both steps.

Dominant negative

A mutation that impairs or abolishes gene function, called a loss-of-function mutation, is most often recessive to the wild-type, so that cells that contain one mutant and one wild-type copy of the gene function normally. Some mutations are dominant over the wild-type gene and have been named 'dominant negative' or 'dominant interfering', because the mutant gene product interferes with the normal gene-product's function.

SUMOylation

Many proteins are modified by the covalent attachment of SUMO (small ubiquitin-like modifier) on lysine residues. SUMOylation often directs proteins to specific subcellular locations, such as the nucleus or plasma membrane. The modification is reversible by specific proteases and is highly transient.

Central polypurine tract

A retroviral RNA genome contains short stretches of purines, called polypurine tracts (PPTs), near the 3′-end. These PPTs function as RNA primers for plus-strand DNA synthesis during reverse transcription. Complex retroviruses (including HIV-1) contain a second, more centrally located PPT that provides a second site for initiation of DNA synthesis. Reverse transcription forms an overhanging DNA flap in this region, which might form a triple-stranded helix, and which has been proposed to function as a nuclear targeting element.

Internal ribosome entry site

(IRES). Some mRNAs, including many viral RNAs, contain a structured RNA element known as an internal ribosome entry site that is found in the 5′-untranslated region downstream of the cap. The IRES is recognized by translation initiation factors, and allows for cap-independent translation.

Cap-dependent translation

The 5′-end of mRNA typically contains a structure called a 5′-cap, including an inverted guanine residue, and is decorated by multiple methyl modifications. Translation of most mRNAs requires the cap and is initiated by factors that recognize the 5′-cap structure.

RNA pseudoknot

Single-stranded RNA can fold into complex structures that are held together by intramolecular contacts. One such structure, called a pseudoknot (because the backbone chain does not form a true topological knot), consists of two base-paired regions of helical duplexes connected by two unpaired loops.

Membrane raft

A highly dynamic domain in the cellular membrane, which has an altered lipid composition, often with an unusually high or low content of cholesterol. Membrane rafts can acquire distinctive membrane proteins.

Exosome

Secreted proteins are often delivered to the cell surface by a membrane vesicle called an exosome. These small vesicles are formed by budding into late endosomes or multivesicular bodies, which then fuse with the plasma membrane and release the exosomes to the extracellular space.

Polarized cell

Many cells that comprise complex organs, especially those forming layers or sheets, acquire distinctive faces or sides with different membrane compositions. Such cells, with a basolateral membrane facing the basement layer and an apical membrane facing the lumen or external medium, are said to be polarized. Viruses often bud directionally in polarized cells.

Ubiquitinylation

Many proteins are post-translationally modified by the covalent addition of ubiquitin (a small protein tag) on specific lysine residues. The addition of multiple ubiquitins in a polyubiquitin chain is often a signal for accelerated degradation. Addition of a single ubiquitin often directs the re-localization of the target protein into specific intracellular vesicles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goff, S. Host factors exploited by retroviruses. Nat Rev Microbiol 5, 253–263 (2007). https://doi.org/10.1038/nrmicro1541

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing