Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenotypic variation in bacteria: the role of feedback regulation

Key Points

  • Even under laboratory conditions, bacteria often show a high degree of phenotypic variability — cells within an isogenic population displaying variable expression patterns.

  • Positive feedback within a regulatory network has the potential to generate multistationarity — the possibility of a cell to switch between states.

  • Bistability or multistability is the occurrence of two or more distinguishable phenotypes within the isogenic population. The ratio of cells within a specific cell state depends on the intrinsic properties of the switch and is often influenced and modulated by environmental signals.

  • It was found that the molecular mechanism underlying phenotypic variation in a number of adaptive bacterial responses, such as competence and sporulation in Bacillus subtilis, is based on positive feedback.

  • Many of the observed — but still unexplained — variable phenotypes reported within bacterial research are likely to originate from the feedback structure within the regulatory pathway.

  • Phenotypic variability is a way to increase the fitness of the population, especially under fluctuating environmental conditions.

Abstract

To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple 'wiring' of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bistability in the lactose-utilization network.
Figure 2: Bistability in competence and sporulation of Bacillus subtilis.
Figure 3: Survival of variable phenotypes under selective pressure.

Similar content being viewed by others

References

  1. Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523–530 (2004). Provides mathematical evidence that under some conditions, a heterogeneous population can achieve higher growth rates than a homogeneous one.

    PubMed  PubMed Central  Google Scholar 

  2. Hallet, B. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4, 570–581 (2001).

    CAS  PubMed  Google Scholar 

  3. Low, D. A., Weyand, N. J. & Mahan, M. J. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197–7204 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas, R. Laws for the dynamics of regulatory networks. Int. J. Dev. Biol. 42, 479–485 (1998).

    CAS  PubMed  Google Scholar 

  5. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  6. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002). Enjoyable review that discusses which advances have been made in understanding gene pathways by the use of synthetic gene networks.

    CAS  PubMed  Google Scholar 

  7. Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002).

    CAS  PubMed  Google Scholar 

  8. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002). Essential review describing the nuts and bolts of FBM.

    CAS  PubMed  Google Scholar 

  9. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA 101, 8414–8419 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Smits, W. K. et al. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56, 604–614 (2005).

    CAS  PubMed  Google Scholar 

  11. Veening, J. W., Hamoen, L. W. & Kuipers, O. P. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56, 1481–1494 (2005).

    CAS  PubMed  Google Scholar 

  12. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004).

    CAS  PubMed  Google Scholar 

  13. Guespin-Michel, J. F. et al. Epigenesis and dynamic similarity in two regulatory networks in Pseudomonas aeruginosa. Acta Biotheor. 52, 379–390 (2004).

    PubMed  Google Scholar 

  14. Guespin-Michel, J. Epigenesis — a request for information on loss of adaptive phenotypes. Microbiology 147, 252–253 (2001).

    CAS  PubMed  Google Scholar 

  15. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohb, M. & Horibata, K. Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced β-galactosidase synthesis. J. Bacteriol. 78, 613–623 (1959).

    Google Scholar 

  17. Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    CAS  PubMed  Google Scholar 

  18. Muller-Hill, B. The lac Operon: A Short History of a Genetic Paradigm (Walter de Gruyter, Berlin, 1996).

    Google Scholar 

  19. Biggar, S. R. & Crabtree, G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J. 20, 3167–3176 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Khlebnikov, A., Skaug, T. & Keasling, J. D. Modulation of gene expression from the arabinose-inducible araBAD promoter. J. Ind. Microbiol. Biotechnol. 29, 34–37 (2002).

    CAS  PubMed  Google Scholar 

  21. Morgan-Kiss, R. M., Wadler, C. & Cronan, J. E. Jr. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl Acad. Sci. USA 99, 7373–7377 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tolker-Nielsen, T., Holmstrom, K., Boe, L. & Molin, S. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27, 1099–1105 (1998).

    CAS  PubMed  Google Scholar 

  23. Gottesman, M. Bacteriophage λ: the untold story. J. Mol. Biol. 293, 177–180 (1999).

    CAS  PubMed  Google Scholar 

  24. Ptashne, M. Regulation of transcription: from λ to eukaryotes. Trends Biochem. Sci. 30, 275–279 (2005).

    CAS  PubMed  Google Scholar 

  25. Thomas, R., Gathoye, A. M. & Lambert, L. A complex control circuit. Regulation of immunity in temperate bacteriophages. Eur. J. Biochem. 71, 211–227 (1976).

    CAS  PubMed  Google Scholar 

  26. Shea, M. A. & Ackers, G. K. The OR control system of bacteriophage λ. A physical–chemical model for gene regulation. J. Mol. Biol. 181, 211–230 (1985).

    CAS  PubMed  Google Scholar 

  27. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Herskowitz, I. & Hagen, D. The lysis–lysogeny decision of phage λ: explicit programming and responsiveness. Annu. Rev. Genet. 14, 399–445 (1980).

    CAS  PubMed  Google Scholar 

  29. Schurr, M. J., Martin, D. W., Mudd, M. H. & Deretic, V. Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J. Bacteriol. 176, 3375–3382 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schurr, M. J. et al. The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell. Mol. Biol. Res. 39, 371–376 (1993).

    CAS  PubMed  Google Scholar 

  31. Guespin-Michel, J. & Kaufman, M. Positive feedback circuits and adaptive regulations in bacteria. Acta Biotheor. 49, 207–218 (2001).

    CAS  PubMed  Google Scholar 

  32. Dacheux, D., Attree, I. & Toussaint, B. Expression of ExsA in trans confers type III secretion system-dependent cytotoxicity on noncytotoxic Pseudomonas aeruginosa cystic fibrosis isolates. Infect. Immun. 69, 538–542 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McCaw, M. L., Lykken, G. L., Singh, P. K. & Yahr, T. L. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol. 46, 1123–1133 (2002).

    CAS  PubMed  Google Scholar 

  34. Lorenz, M. G. & Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58, 563–602 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nature Rev. Microbiol. 2, 241–249 (2004).

    CAS  Google Scholar 

  36. Hadden, C. & Nester, E. W. Purification of competent cells in the Bacillus subtilis transformation system. J. Bacteriol. 95, 876–885 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cahn, F. H. & Fox, M. S. Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J. Bacteriol. 95, 867–875 (1968). References 15, 36 and 37 are classic papers describing population heterogeneity.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van Sinderen, D. et al. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15, 455–462 (1995).

    CAS  PubMed  Google Scholar 

  39. Hamoen, L. W., Smits, W. K., de Jong, A., Holsappel, S. & Kuipers, O. P. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res. 30, 5517–5528 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ogura, M. et al. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J. Bacteriol. 184, 2344–2351 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Berka, R. M. et al. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol. 43, 1331–1345 (2002).

    CAS  PubMed  Google Scholar 

  42. Dubnau, D. The regulation of genetic competence in Bacillus subtilis. Mol. Microbiol. 5, 11–18 (1991).

    CAS  PubMed  Google Scholar 

  43. van Sinderen, D. & Venema, G. ComK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176, 5762–5770 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamoen, L. W., Van Werkhoven, A. F., Bijlsma, J. J., Dubnau, D. & Venema, G. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev. 12, 1539–1550 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoa, T. T., Tortosa, P., Albano, M. & Dubnau, D. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol. 43, 15–26 (2002).

    CAS  PubMed  Google Scholar 

  46. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001). Provides evidence that a graded response can be converted to a bistable response using FBM.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56, 615–624 (2005). References 10 and 47 show experimentally that autostimulation of ComK is essential for the natural bistable process of competence development in B. subtilis.

    CAS  PubMed  Google Scholar 

  48. Steinmoen, H., Knutsen, E. & Havarstein, L. S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl Acad. Sci. USA 99, 7681–7686 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Steinmoen, H., Teigen, A. & Havarstein, L. S. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185, 7176–7183 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kreth, J., Merritt, J., Shi, W. & Qi, F. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol. 57, 392–404 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).

    CAS  PubMed  Google Scholar 

  52. Guiral, S., Mitchell, T. J., Martin, B. & Claverys, J. P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl Acad. Sci. USA 102, 8710–8715 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Piggot, P. J. & Losick, R. Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, A. L., Losick, R. & Hoch, J. A.) 483–517 (American Society for Microbiology, Washington DC, 2002).

    Google Scholar 

  54. Errington, J. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol. 1, 117–126 (2003).

    CAS  Google Scholar 

  55. Fawcett, P., Eichenberger, P., Losick, R. & Youngman, P. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 97, 8063–8068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552 (1991).

    CAS  PubMed  Google Scholar 

  57. Lewis, R. J. et al. Dimer formation and transcription activation in the sporulation response regulator Spo0A. J. Mol. Biol. 316, 235–245 (2002).

    CAS  PubMed  Google Scholar 

  58. Fujita, M., Gonzalez-Pastor, J. E. & Losick, R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187, 1357–1368 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chung, J. D., Stephanopoulos, G., Ireton, K. & Grossman, A. D. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176, 1977–1984 (1994). References 11 and 59 show that Spo0A autostimulation generates sporulation bistability, and that the phosphorelay is used as a tuner to modulate the ratio of sporulating cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701 (2003).

    CAS  PubMed  Google Scholar 

  61. Dawes, I. W. & Thornley, J. H. Sporulation in Bacillus subtilis. Theoretical and experimental studies in continuous culture systems. J. Gen. Microbiol. 62, 49–66 (1970).

    CAS  PubMed  Google Scholar 

  62. Maughan, H. & Nicholson, W. L. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J. Bacteriol. 186, 2212–2214 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Veening, J. W., Smits, W. K., Hamoen, L. W. & Kuipers, O. P. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J. Appl. Microbiol. (in the press).

  64. Russo-Marie, F., Roederer, M., Sager, B., Herzenberg, L. A. & Kaiser, D. β-galactosidase activity in single differentiating bacterial cells. Proc. Natl Acad. Sci. USA 90, 8194–8198 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Thony-Meyer, L. & Kaiser, D. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175, 7450–7462 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomas, R. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Springer Ser. Synergetics 6, 180–193 (1981).

    Google Scholar 

  67. Burchard, R. P., Burchard, A. C. & Parish, J. H. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol. 23, 1657–1662 (1977).

    CAS  PubMed  Google Scholar 

  68. Mulec, J. et al. A cka–gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J. Bacteriol. 185, 654–659 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuhar, I., van Putten, J. P., Zgur-Bertok, D., Gaastra, W. & Jordi, B. J. Codon-usage based regulation of colicin K synthesis by the stress alarmone ppGpp. Mol. Microbiol. 41, 207–216 (2001).

    CAS  PubMed  Google Scholar 

  70. Hautefort, I., Proenca, M. J. & Hinton, J. C. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Microbiol. 69, 7480–7491 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sentchilo, V., Zehnder, A. J. & van der Meer, J. R. Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Mol. Microbiol. 49, 93–104 (2003).

    CAS  PubMed  Google Scholar 

  72. Sentchilo, V., Ravatn, R., Werlen, C., Zehnder, A. J. & van der Meer, J. R. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13. J. Bacteriol. 185, 4530–4538 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Booth, I. R. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78, 19–30 (2002).

    PubMed  Google Scholar 

  74. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    CAS  PubMed  Google Scholar 

  75. Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005).

    PubMed  PubMed Central  Google Scholar 

  76. Levin, B. R. Microbiology. Noninherited resistance to antibiotics. Science 305, 1578–1579 (2004).

    CAS  PubMed  Google Scholar 

  77. Makinoshima, H., Nishimura, A. & Ishihama, A. Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase. Mol. Microbiol. 43, 269–279 (2002).

    CAS  PubMed  Google Scholar 

  78. Nishino, T., Nayak, B. B. & Kogure, K. Density-dependent sorting of physiologically different cells of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 69, 3569–3572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vidal-Mas, J. et al. Rapid flow cytometry — Nile red assessment of PHA cellular content and heterogeneity in cultures of Pseudomonas aeruginosa 47T2 (NCIB 40044) grown in waste frying oil. Antonie Van Leeuwenhoek 80, 57–63 (2001).

    CAS  PubMed  Google Scholar 

  80. Branda, S. S., Vik, S., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

    CAS  PubMed  Google Scholar 

  81. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    CAS  PubMed  Google Scholar 

  82. Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–464 (2005). References 7 and 82 are excellent reviews on noise in gene expression.

    PubMed  Google Scholar 

  83. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  84. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  85. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002). References 83 and 85 show how noise can be measured within a gene network, and show experimentally the effect of the number of molecules on the level of noise.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    CAS  PubMed  Google Scholar 

  88. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. USA 98, 8614–8619 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    CAS  PubMed  Google Scholar 

  90. Smolen, P., Baxter, D. A. & Byrne, J. H. Modeling transcriptional control in gene networks — methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292 (2000).

    CAS  PubMed  Google Scholar 

  91. Heinrich, R. & Schuster, S. The modelling of metabolic systems. Structure, control and optimality. Biosystems 47, 61–77 (1998).

    CAS  PubMed  Google Scholar 

  92. Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20, 433–440 (1998).

    CAS  PubMed  Google Scholar 

  93. Ninfa, A. J. & Mayo, A. E. Hysteresis vs graded responses: the connections make all the difference. Sci. STKE 2004, e20 (2004).

    Google Scholar 

  94. Bren, A. & Eisenbach, M. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J. Mol. Biol. 312, 699–709 (2001).

    CAS  PubMed  Google Scholar 

  95. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    CAS  PubMed  Google Scholar 

  97. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005). References 96 and 97 are recent papers describing how noise propagates throughout gene networks.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schaeffer, P., Millet, J. & Aubert, J. P. Catabolic repression of bacterial sporulation. Proc. Natl Acad. Sci. USA 54, 704–711 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    PubMed  PubMed Central  Google Scholar 

  100. Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).

    PubMed  PubMed Central  Google Scholar 

  101. Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    CAS  PubMed  Google Scholar 

  103. Hasty, J., Pradines, J., Dolnik, M. & Collins, J. J. Noise-based switches and amplifiers for gene expression. Proc. Natl Acad. Sci. USA 97, 2075–2080 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004).

    CAS  PubMed  Google Scholar 

  105. Mittler, J. E. Evolution of the genetic switch in temperate bacteriophage. I. Basic theory. J. Theor. Biol. 179, 161–172 (1996).

    CAS  PubMed  Google Scholar 

  106. Stumpf, M. P. & Pybus, O. G. Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiol. Lett. 214, 143–152 (2002).

    CAS  PubMed  Google Scholar 

  107. Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005).

    PubMed  Google Scholar 

  108. Sung, H. M. & Yasbin, R. E. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J. Bacteriol. 184, 5641–5653 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA 82, 5724–5727 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science 196, 170–172 (1977).

    CAS  PubMed  Google Scholar 

  111. Meyer, T. F., Gibbs, C. P. & Haas, R. Variation and control of protein expression in Neisseria. Annu. Rev. Microbiol. 44, 451–477 (1990).

    CAS  PubMed  Google Scholar 

  112. Stibitz, S., Aaronson, W., Monack, D. & Falkow, S. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338, 266–269 (1989).

    CAS  PubMed  Google Scholar 

  113. van der Woude, M., Braaten, B. & Low, D. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 4, 5–9 (1996).

    CAS  PubMed  Google Scholar 

  114. Owen, P., Meehan, M., Loughry-Doherty, H. & Henderson, I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol. 16, 63–76 (1996).

    CAS  PubMed  Google Scholar 

  115. Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Angeli, D., Ferrell, J. E. Jr & Sontag, E. D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl Acad. Sci. USA 101, 1822–1827 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  118. Haijema, B. J., Hahn, J., Haynes, J. & Dubnau, D. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol. Microbiol. 40, 52–64 (2001).

    CAS  PubMed  Google Scholar 

  119. Dean, D. H. & Douthit, H. A. Buoyant density heterogeneity in spores of Bacillus subtilis: biochemical and physiological basis. J. Bacteriol. 117, 601–610 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Krimmer, V. et al. Detection of Staphylococcus aureus and i in clinical samples by 16S rRNA-directed in situ hybridization. J. Clin. Microbiol. 37, 2667–2673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, N. et al. Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure–function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 1289–1297 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lange, M., Tolker-Nielsen, T., Molin, S. & Ahring, B. K. In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells. Appl. Environ. Microbiol. 66, 1796–1800 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998). Classic review on the use of GFP and its potential for modern biology.

    CAS  PubMed  Google Scholar 

  124. Southward, C. M. & Surette, M. G. The dynamic microbe: green fluorescent protein brings bacteria to light. Mol. Microbiol. 45, 1191–1196 (2002).

    CAS  PubMed  Google Scholar 

  125. Greer, L. F., III & Szalay, A. A. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence. 17, 43–74 (2002).

    CAS  PubMed  Google Scholar 

  126. Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641–696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Glynn, J. R. Jr, Belongia, B. M., Arnold, R. G., Ogden, K. L. & Baygents, J. C. Capillary electrophoresis measurements of electrophoretic mobility for colloidal particles of biological interest. Appl. Environ. Microbiol. 64, 2572–2577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

W.K.S. and J.W.V. were supported by grants from the Netherlands Organization of Scientific Research, Earth and Life Sciences (NWO-ALW) and Technology Foundation (NWO-STW), respectively. We thank B. Buttaro (Temple University School of Medicine, Philadelphia, USA) for allowing us to cite unpublished work, J. Guespin for helpful comments on the manuscript and L. Hamoen for stimulating discussions. We apologize to colleagues whose work was not cited fully due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar P. Kuipers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

Bacteriophage λ

Entrez Genome Project

Bacillus subtilis

Escherichia coli

Mycobacterium tuberculosis

Myxococcus xanthus

Pseudomonas aeruginosa

Saccharomyces cerevisiae

Salmonella enterica serovar Typhimurium

Staphylococcus aureus

Streptococcus mutans

Streptococcus pneumoniae

Streptococcus pyogenes

FURTHER INFORMATION

Wiep Klaas Smits, Oscar P. Kuipers and Jan-Willem Veening's homepage

Glossary

Phenotypic variation

Cells within an isogenic population that show variable expression patterns.

Epigenetic

Any heritable change in gene expression that is not caused by a change in DNA sequence.

Multistationarity

The possibility of the existence of two (or more) stationary states of gene expression between which individual cells can switch.

Bistability

Situation in which two stable states coexist among cells within a population.

Multistability

The existence of two (or more) distinct phenotypes within an isogenic population owing to multistationarity.

Feedback-based multistability

(FBM). The existence of two or more distinct subpopulations in a culture, based on the presence of positive or negative feedback in the underlying regulatory network.

Graded response

Expression of a gene in direct correlation with the intracellular levels of its regulator.

Gratuitous inducer

Compounds that bind to, and inactivate, a repressor without being metabolized by the induced enzymes.

Hysteresis

Situation in which the switch from one state to the other requires a force unequal to that required for the reverse transition.

Binary

Exhibiting an 'on' and 'off' state.

Phase plane

Solution of a system of differential equations plotted in a two-dimensional plane.

ComK

Master regulator for competence development in Bacillus subtilis.

Monomodal

Demonstrating a single Gaussian distribution.

Toggle switch

A bistable switch formed by double-negative feedback.

Bacteriocin

Bacterially produced, small, heat-stable peptide that is active against other bacteria and to which the producer has a specific immunity mechanism. Bacteriocins can have a narrow or broad target spectrum.

Spo0A

Master regulator for sporulation in Bacillus subtilis.

Flow cytometry

A technique that measures the fluorescence of individual cells as they pass through a laser beam.

Noise

Part of a signal or parameter that is a deviation from the true value.

Alarmone

Signalling molecule produced in response to nutritional and/or physicochemical stress

Finite number effect

The effect that fewer molecules lead to increased noise levels.

Intrinsic noise

Noise inherent to the biochemical process of gene expression (transcription and translation).

Extrinsic noise

Noise due to fluctuations in other cellular components required for gene expression in a cell (such as polymerase and regulators).

Transcriptional reinitiation

Repeated rounds of transcription from a single mRNA, without dissociation of the transcription machinery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smits, W., Kuipers, O. & Veening, JW. Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4, 259–271 (2006). https://doi.org/10.1038/nrmicro1381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing