Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Promoters in the environment: transcriptional regulation in its natural context

Key Points

  • Transcriptional activation of most bacterial promoters in their natural environments is not a simple on/off decision, as the expression of cognate genes is integrated in layers of iterative regulatory networks that ensure the performance not only of the whole cell, but also of the bacterial population, and even of the entire microbial community, in a changing environment.

  • Promoters merge specific responses to distinct signals with reactions to more general environmental changes. The integration of multiple signals by distinct promoters in bacteria that inhabit complex niches is paramount for those interested in using microorganisms for the bioremediation of toxic chemicals.

  • The most well-studied example of environmental co-regulation of transcription has been the catabolic operons encoded by the TOL plasmid pWW0 of Pseudomonas putida, which control the degradation of toluene and m-xylene. One of the key components is the σ54-dependent promoter Pu, which responds to at least four different physiological/environmental inputs including m-xylene.

  • Although Pu is inhibited in vivo during rapid growth in rich medium, it can be transcribed in vitro by just combining purified IHF, σ54, core RNAP and the regulator. It is plausible that the mechanism (or mechanisms) that inhibit transcription in vivo, in response to multiple environmental signals, do so by preventing the binding of the σ54–RNAP to their target sites.

  • The extreme reductionist approaches of molecular biology have meant that it is now impractical to deal with large amounts of information on transcriptional control. One way forward is the application of network theory to regulation of gene expression. This approach allows ill-defined descriptions of complexity to be replaced by objectively quantifiable, numerical parameters, such as connectivity or density. The naive notion that 'everything is connected to everything' in biological systems is therefore quantified, categorized and properly understood.

  • While the global transcription network for individual cells is highly structured, several sub-networks appear more often than would be expected by mere chance. An intriguing possibility to account for this paradox is that evolutionary selection operates on the structure of the signal-integration and -regulatory networks, rather than on their individual components.

  • The genomes of bacteria that inhabit stable habitats (for instance, extremophiles, obligate symbionts and some intracellular pathogens) encode few regulators. By contrast, many other pathogens and free-living non-pathogenic organisms are more variable in their relative contents of transcriptional factors. A careful inspection of these groups revealed that the distinction in the share of regulators was related to the 'natural history' of each bacterium (that is, the life-style and degree of specialization).

Abstract

Transcriptional activation of many bacterial promoters in their natural environment is not a simple on/off decision. The expression of cognate genes is integrated in layers of iterative regulatory networks that ensure the performance not only of the whole cell, but also of the bacterial population, and even the microbial community, in a changing environment. Unlike in vitro systems, where transcription initiation can be recreated with a handful of essential components, in vivo, promoters must process various physicochemical and metabolic signals to determine their output. This helps to achieve optimal bacterial fitness in extremely competitive niches. Promoters therefore merge specific responses to distinct signals with inclusive reactions to more general environmental changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulons and stimulons.
Figure 2: Downregulation of σ54 promoters in vivo reflects the binding of factors to target DNA sequences.
Figure 3: Regulation of n-alkane (octane) degradation by the alk system of the Pseudomonas putida GPo1 plasmid pOCT.
Figure 4: Features of transcription networks.

Similar content being viewed by others

References

  1. McAdams, H. H., Srinivasan, B. & Arkin, A. P. The evolution of genetic regulatory systems in bacteria. Nature Rev. Genet. 5, 169–178 (2004). Interesting account of applications of networks and circuitry theory to the comprehension of how transcriptional elements evolve, with some lessons that are useful for synthetic biology.

    Article  CAS  PubMed  Google Scholar 

  2. Cases, I., de Lorenzo, V. & Ouzounis, C. A. Transcription regulation and environmental adaptation in bacteria. Trends Microbiol. 11, 248–253 (2003). First systematic study on the distribution of transcriptional factors in the genomes of bacteria in relation to their environmental lifestyle.

    Article  CAS  PubMed  Google Scholar 

  3. Hatfield, G. W. & Benham, C. J. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36, 175–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, S. J. & Gralla, J. D. Osmo-regulation of bacterial transcription via poised RNA polymerase. Mol. Cell 14, 153–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Timmis, K. N. & Pieper, D. H. Bacteria designed for bioremediation. Trends Biotechnol. 17, 200–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Lovley, D. R. Cleaning up with genomics: applying molecular biology to bioremediation. Nature Rev. Microbiol. 1, 35–44 (2003).

    Article  CAS  Google Scholar 

  7. Pieper, D. H., Martins dos Santos, V. A. & Golyshin, P. N. Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr. Opin. Biotechnol. 15, 215–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wenderoth, D. F., Rosenbrock, P., Abraham, W. R., Pieper, D. H. & Hofle, M. G. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb. Ecol. 46, 161–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Stulke, J. & Hillen, W. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2, 195–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Barnard, A., Wolfe, A. & Busby, S. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr. Opin. Microbiol. 7, 102–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hugouvieux-Cotte-Pattat, N., Khöler, T., Rekik, M. & Harayama, S. Growth-phase-dependent expression of the Pseuomonas putida TOL plasmid pWW0 catabolic genes. J. Bacteriol. 172, 6651–6660 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holtel, A., Marques, S., Mohler, I., Jakubzik, U. & Timmis, K. N. Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J. Bacteriol. 176, 1773–1776 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marques, S., Holtel, A., Timmis, K. N. & Ramos, J. L. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. J. Bacteriol. 176, 2517–2524 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duetz, W. A., Marques, S., Wind, B., Ramos, J. L. & van Andel, J. G. Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture. Appl. Environ. Microbiol. 62, 601–606 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cases, I., de Lorenzo, V. & Perez-Martin, J. Involvement of σ54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter. Mol. Microbiol. 19, 7–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Cases, I. & de Lorenzo, V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J. 20, 1–11 (2001). An insight into the diversity of mechanisms found in soil bacteria for integration of substrate-specific and global regulatory inputs in promoters that drive biodegradation of toxic pollutants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tropel, D. & Van Der Meer, J. R. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol. Mol. Biol. Rev. 68, 474–500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Velazquez, F., di Bartolo, I. & de Lorenzo, V. Genetic evidence that catabolites of the Entner–Doudoroff pathway signal C-source repression of the σ54Pu promoter of Pseudomonas putida. J. Bacteriol. 186, 8267–8275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cases, I., Perez-Martin, J. & de Lorenzo, V. The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the σ54-dependent Pu promoter of the TOL plasmid. J. Biol. Chem. 274, 15562–15568 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Cases, I., Velazquez, F. & de Lorenzo, V. Role of ptsO in carbon-mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid. J. Bacteriol. 183, 5128–5133 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carmona, M. & de Lorenzo, V. Involvement of the FtsH (HflB) protease in the activity of σ54 promoters. Mol. Microbiol. 31, 261–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Carmona, M., Rodriguez, M. J., Martinez-Costa, O. & de Lorenzo, V. In vivo and in vitro effects of (p)ppGpp on the σ54 promoter Pu of the TOL plasmid of Pseudomonas putida. J. Bacteriol. 182, 4711–4718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jishage, M., Kvint, K., Shingler, V. & Nystrom, T. Regulation of σ factor competition by the alarmone ppGpp. Genes Dev. 16, 1260–1270 (2002). By using mostly genetic approaches, this work reveals a sophisticated mechanism of global transcriptional control, through competition in stationary phase of the various σ factors for a limited supply of RNAP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laurie, A. D. et al. The role of the alarmone (p)ppGpp in σ N competition for core RNA polymerase. J. Biol. Chem. 278, 1494–1503 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Jurado, P., Fernandez, L. A. & de Lorenzo, V. σ54 levels and physiological control of the Pseudomonas putida Pu promoter. J. Bacteriol. 185, 3379–3383 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valls, M., Buckle, M. & de Lorenzo, V. In vivo UV laser footprinting of the Pseudomonas putida σ54Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J. Biol. Chem. 277, 2169–2175 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Rescalli, E. et al. Novel physiological modulation of the Pu promoter of TOL plasmid: negative regulatory role of the TurA protein of Pseudomonas putida in the response to suboptimal growth temperatures. J. Biol. Chem. 279, 7777–7784 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Shingler, V., Bartilson, M. & Moore, T. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol. 175, 1596–1604 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fernandez, S., Shingler, V. & de Lorenzo, V. Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. J. Bacteriol. 176, 5052–5058 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sze, C. C. & Shingler, V. The alarmone (p)ppGpp mediates physiological-responsive control at the σ54-dependent Po promoter. Mol. Microbiol. 31, 1217–1228 (1999). A landmark in the studies of the metabolic control of promoters driving operons for degradation of toxic pollutants. New roles for (p)ppGpp.

    Article  CAS  PubMed  Google Scholar 

  31. Bertoni, G., Fujita, N., Ishihama, A. & de Lorenzo, V. Active recruitment of σ54-RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and αCTD. EMBO J. 17, 5120–5128 (1998). First demonstration that the IHF site of σ54 promoters can have more functions than simply bending the DNA, as it helps the RNAP to bind the target promoter

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carmona, M., de Lorenzo, V. & Bertoni, G. Recruitment of RNA polymerase is a rate-limiting step for the activation of the σ54 promoter Pu of Pseudomonas putida. J. Biol. Chem. 274, 33790–33794 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Macchi, R. et al. Recruitment of σ54-RNA polymerase to the Pu promoter of Pseudomonas putida through integration host factor-mediated positioning switch of α subunit carboxyl-terminal domain on an UP-like element. J. Biol. Chem. 278, 27695–27702 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Carmona, M., Fernandez, S., Rodriguez, M. J. & de Lorenzo, V. m-xylene responsive Pu/PnifH hybrid σ54 promoters that overcome physiological control in Pseudomonas putida KT2442. J. Bacteriol. 187, 125–134 (2004).

    Article  CAS  Google Scholar 

  35. Rojo, F. & Dinamarca, A. in Pseudomonas Vol. 2 (ed. Ramos, J. L.) 365–387 (Kluwer Academic/Plenum Publishers, New York, 2004).

    Book  Google Scholar 

  36. O'Leary, N. D., O'Connor, K. E., Duetz, W. & Dobson, A. D. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147, 973–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tover, A., Ojangu, E. L. & Kivisaar, M. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology 147, 2149–2156 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Yuste, L. & Rojo, F. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J. Bacteriol. 183, 6197–6202 (2001). Demonstration that the general regulator of catabolite repression in Pseudomonas spp., Crc, controls the output of the genes for n -alkane degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morales, G. et al. The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186, 1337–1344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dinamarca, M. A., Ruiz-Manzano, A. & Rojo, F. Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J. Bacteriol. 184, 3785–3793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dinamarca, M. A., Aranda-Olmedo, I., Puyet, A. & Rojo, F. Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures. J. Bacteriol. 185, 4772–4778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petruschka, L., Burchhardt, G., Muller, C., Weihe, C. & Herrmann, H. The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation. Mol. Genet. Genomics 266, 199–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Oh, J. I. & Kaplan, S. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116–1123 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. van Beilen, J. B. et al. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ. Microbiol. 6, 264–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ramos, J. L., Marques, S. & Timmis, K. N. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu. Rev. Microbiol. 51, 341–373 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. McFall, S. M., Abraham, B., Narsolis, C. G. & Chakrabarty, A. M. A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon. J. Bacteriol. 179, 6729–6735 (1997). This work reports an intriguing mechanism of down-regulation of a xenobiotic-degrading pathway by direct interaction of an intermediate of the TCA cycle with the main transcriptional regulator ClcR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Metzner, M., Germer, J. & Hengge, R. Multiple stress signal integration in the regulation of the complex σS-dependent csiD–ygaF–gabDTP operon in Escherichia coli. Mol. Microbiol. 51, 799–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Dixon, R. & Kahn, D. Genetic regulation of biological nitrogen fixation. Nature. Rev. Microbiol. 2, 621–631 (2004).

    Article  CAS  Google Scholar 

  49. Van Dien, S. & de Lorenzo, V. Deciphering environmental signal integration in σ54 dependent promoters with a simple mathematical model. J. Theor. Biol. 224, 437–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Nojiri, H., Shintani, M. & Omori, T. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl. Microbiol. Biotechnol. 64, 154–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Permina, E. A., Mironov, A. A. & Gelfand, M. S. Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene 293, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Greated, A., Lambertsen, L., Williams, P. A. & Thomas, C. M. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ. Microbiol. 4, 856–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Kuga, A., Okamoto, R. & Inoue, M. ampR gene mutations that greatly increase class C β-lactamase activity in Enterobacter cloacae. Antimicrob. Agents Chemother. 44, 561–567 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Corvec, S., Caroff, N., Espaze, E., Marraillac, J. & Reynaud, A. −11 Mutation in the ampC promoter increasing resistance to β-lactams in a clinical Escherichia coli strain. Antimicrob. Agents Chemother. 46, 3265–3267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rainey, P. B. & Cooper, T. F. Evolution of bacterial diversity and the origins of modularity. Res. Microbiol. 155, 370–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Woese, C. R. A new biology for a new century. Microbiol. Mol. Biol. Rev. 68, 173–186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barabasi, A. L. & Bonabeau, E. Scale-free networks. Sci. Am. 288, 60–69 (2003).

    Article  PubMed  Google Scholar 

  59. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000). By now, this paper is a classic example of the application of network theory to the analysis of biological phenomena. It contains a clear description of all the concepts relevant for understanding the basis of the field.

    Article  CAS  PubMed  Google Scholar 

  60. Salgado, H. et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32 (Database issue), D303–D306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20, 433–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Topological and causal structure of the yeast transcriptional regulatory network. Nature. Genet. 31, 60–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Martinez-Antonio, A. & Collado-Vides, J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6, 482–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Gottesman, S. Bacterial regulation: global regulatory networks. Annu. Rev. Genet. 18, 415–441 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Arita, M. The metabolic world of Escherichia coli is not small. Proc. Natl Acad. Sci. USA 101, 1543–1547 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van Noort, V., Snel, B. & Huynen, M. A. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep. 5, 280–284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature. Genet. 31, 64–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Dobrin, R., Beg, Q. K., Barabasi, A. L. & Oltvai, Z. N. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5, 10 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003). Example of directed design of a regulatory network with predefined properties.

    Article  CAS  PubMed  Google Scholar 

  74. Papp, B., Pal, C. & Hurst, L. D. Evolution of cis-regulatory elements in duplicated genes of yeast. Trends Genet. 19, 417–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. & Teichmann, S. A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Teichmann, S. A. & Babu, M. M. Gene regulatory network growth by duplication. Nature. Genet. 36, 492–496 (2004). A comprehensive study on how highly connected nodes of regulatory networks tend to acquire still more connections on gene duplication.

    Article  CAS  PubMed  Google Scholar 

  77. Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature. Genet. 34, 264–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Madan Babu, M. & Teichmann, S. A. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res. 31, 1234–1244 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Madan Babu, M. & Teichmann, S. A. Functional determinants of transcription factors in Escherichia coli: protein families and binding sites. Trends Genet. 19, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Perez-Rueda, E. & Collado-Vides, J. Common history at the origin of the position–function correlation in transcriptional regulators in archaea and bacteria. J. Mol. Evol. 53, 172–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Blasco, R., Wittich, R. M., Mallavarapu, M., Timmis, K. N. & Pieper, D. H. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J. Biol. Chem. 270, 29229–29235 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Skiba, A. et al. Formation of protoanemonin from 2-chloro-cis,cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase. J. Bacteriol. 184, 5402–5409 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Lorenzo, V. & Perez-Martin, J. Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environmental signals. Mol. Microbiol 19, 1177–1184 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Pazos, F., Valencia, A. & de Lorenzo, V. The organization of the microbial biodegradation network from a systems-biology perspective. EMBO Rep. 4, 994–999 (2003). The first application of systems biology to understanding the result of joining all reactions of the peripheral metabolism of environmental bacteria with the tools of network theory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wackett, L. P. Evolution of enzymes for the metabolism of new chemical inputs into the environment. J. Biol. Chem. 279, 41259–41262 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ramos, J. L. et al. Mechanisms of solvent tolerance in Gram-negative bacteria. Annu. Rev. Microbiol. 56, 743–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Withers, H., Swift, S. & Williams, P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr. Opin. Microbiol. 4, 186–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Pappas, K. M., Weingart, C. L. & Winans, S. C. Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol. Microbiol. 53, 755–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Arenghi, F. L., Pinti, M., Galli, E. & Barbieri, P. Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl. Environ. Microbiol. 65, 4057–4063 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Marques, S. & Ramos, J. L. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol. Microbiol. 9, 923–929 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Phoenix, P. et al. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ. Microbiol. 5, 1309–1327 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Ramos-Gonzalez, M. I. et al. Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J. Bacteriol. 184, 7062–7067 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Diaz, E. & Prieto, M. A. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol. 11, 467–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Ramos, J. L., Stolz, A., Reineke, W. & Timmis, K. N. Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl Acad. Sci. USA 83, 8467–8471 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cebolla, A., Sousa, C. & de Lorenzo, V. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J. Biol. Chem. 272, 3986–3992 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002). Demonstration that a few regulatory elements can be combined in many ways to give repertoires of biologically significant transcriptional-control circuits.

    Article  CAS  PubMed  Google Scholar 

  98. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Andersson, J. O. & Andersson, S. G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 18, 829–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Ranea, J. A., Buchan, D. W., Thornton, J. M. & Orengo, C. A. Evolution of protein superfamilies and bacterial genome size. J. Mol. Biol. 336, 871–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. van Nimwegen, E. Scaling laws in the functional content of genomes. Trends Genet. 19, 479–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Konstantinidis, K. T. & Tiedje, J. M. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl Acad. Sci. USA 101, 3160–3165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martinez-Bueno, M. A., Tobes, R., Rey, M. & Ramos, J. L. Detection of multiple extracytoplasmic function (ECF) σ factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environ. Microbiol. 4, 842–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Galperin, M. Y., Nikolskaya, A. N. & Koonin, E. V. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203, 11–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Galperin, M. Y. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol. 6, 552–567 (2004). An excellent update on two-component systems in the most recently sequenced bacterial genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Arora, S. K., Ritchings, B. W., Almira, E. C., Lory, S. & Ramphal, R. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J. Bacteriol. 179, 5574–5581 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Unge, A., Tombolini, R., Molbak, L. & Jansson, J. K. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp–luxAB marker system. Appl. Environ. Microbiol. 65, 813–821 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Neretin, L. N. et al. Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ. Microbiol. 5, 660–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Burgmann, H., Widmer, F., Sigler, W. V. & Zeyer, J. mRNA extraction and reverse transcription–PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl. Environ. Microbiol. 69, 1928–1935 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Han, J. I. & Semrau, J. D. Quantification of gene expression in methanotrophs by competitive reverse transcription-polymerase chain reaction. Environ. Microbiol. 6, 388–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004). This is an impressive report of the diversity of sequences found in the metagenome of marine microorganisms.

    Article  CAS  PubMed  Google Scholar 

  112. Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perez-Martin, J. & de Lorenzo, V. In vitro activities of an N-terminal truncated form of XylR, a σ54-dependent transcriptional activator of Pseudomonas putida. J. Mol. Biol. 258, 575–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Sze, C. C., Laurie, A. D. & Shingler, V. In vivo and in vitro effects of integration host factor at the DmpR-regulated σ54-dependent Po promoter. J. Bacteriol. 183, 2842–2851 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vogel, S. K., Schulz, A. & Rippe, K. Binding affinity of Escherichia coli RNA polymerase σ54 holoenzyme for the glnAp2, nifH and nifL promoters. Nucleic Acids Res. 30, 4094–4101 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Canosa, I., Sanchez-Romero, J. M., Yuste, L. & Rojo, F. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol. Microbiol. 35, 791–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Shingler, V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ. Microbiol. 5, 1226–1241 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, X. et al. Mechanochemical ATPases and transcriptional activation. Mol. Microbiol. 45, 895–903 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Valencia, C. Ouzounis, F. Rojo and V. Shingler for helpful discussions and apologize to investigators whose work was not cited because of space constraints. Work from our laboratories that has been cited in this article was funded by grants from the Spanish Ministry of Education and Science, the European Union and the Conservation Biology Programme of the Banco de Bilbao-Vizcaya Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

ArcA

crc

cyoB

FIS

FNR

FtsH

LRP

NahR

NarL

ptsN

Rsd

XylR

XylS

Glossary

REGULON

All the genes and gene clusters (operons) that respond to the same transcriptional regulator, which becomes competent for activation/repression of cognate promoters in response to a given environmental signal.

STIMULON

All the genes and gene clusters that are expressed in response to a distinct physicochemical input, regardless of the specific regulators that mediate such a response. Typically, one stimulon involves the action of more than one transcription factor.

CATABOLITE REPRESSION

Inhibition of the transport and/or metabolism of certain carbon sources when alternative and easier-to-consume nutrients are present in the medium. In practice, this leads to a preferential choice of one carbon source out of those available.

ENTNER–DOUDOROFF PATHWAY

One of the major metabolic routes for the consumption of carbohydrates in bacteria. Typically, glucose is phosphorylated to G6P, then converted into gluconolactone-P and eventually into 2-dehydro 3-deoxygluconate-P. This intermediate is then split into pyruvate and GA3P, which enter the rest of the glycolytic pathway at separate sites. Glucose can also be converted into gluconate, which can only be degraded through this pathway.

EXPONENTIAL SILENCING

The lack of activity of many promoters of biodegradative operons for recalcitrant carbon sources when cells grow exponentially in a rich medium.

ALARMONE

An intracellular signal molecule that is synthesized at high levels when cells face distinct types of environmental insults. The archetypical alarmone is (p)ppGpp, the production of which is triggered by, among other signals, amino-acid starvation.

STRINGENT RESPONSE

The traditional name given to all the transcriptional responses to elevated levels of intracellular ppGpp that are brought about by various nutritional and environmental stresses.

CONNECTIVITY

The number of connections that a particular node has in a network. The connectivity distribution reflects the frequency of nodes with each possible connectivity value in the network.

POWER-LAW DISTRIBUTION

The relationship between two scalar quantities x and y is such that the relationship can be written as y = axγ where a (the constant of proportionality) and γ (the exponent of the power law) are constants.

SCALE-FREE NETWORKS

Networks with the property that the number of links k that originate from a given node has a power-law distribution p(k)k−γ and therefore, a few network nodes (called hubs) become far more connected than the others. This distribution dramatically influences the way the network operates, as random failures are unlikely to harm an important hub, while damage targeted to highly connected nodes might make such networks collapse.

SMALL-WORLD

Small world networks are those in which most nodes are highly connected to their neighbours, that is, the nodes are highly clustered and have shorter paths between them.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cases, I., de Lorenzo, V. Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3, 105–118 (2005). https://doi.org/10.1038/nrmicro1084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing