Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria

An Erratum to this article was published on 24 July 2017

This article has been updated

Abstract

Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linking the regulation of competence-induced DNA uptake and the production of killing factors in Vibrio cholerae and Streptococcus pneumoniae.
Figure 2: Diversity of effector–immunity gene pairs in different Vibrio cholerae strains.
Figure 3: Fratricide versus kin-discriminated killing.
Figure 4: T6SS-mediated and bacteriocin-mediated neighbour predation fosters horizontal gene transfer in Vibrio cholerae and Streptococcus pneumoniae, respectively.

Similar content being viewed by others

Change history

  • 14 July 2017

    The author affiliation has been written incorrectly and this is now corrected.

References

  1. Karch, H. et al. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol. Med. 4, 841–848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Blokesch, M. Natural competence for transformation. Curr. Biol. 26, 3255 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lorenz, M. G. & Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58, 563–602 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2, 241–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Metzger, L. C. & Blokesch, M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr. Opin. Microbiol. 30, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Treangen, T. J. & Rocha, E. P. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7, e1001284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nielsen, K. M., Johnsen, P. J., Bensasson, D. & Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosafety Res. 6, 37–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Steinmoen, H., Knutsen, E. & Havarstein, L. S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl Acad. Sci. USA 99, 7681–7686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guiral, S., Mitchell, T. J., Martin, B. & Claverys, J. P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl Acad. Sci. USA 102, 8710–8715 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borgeaud, S., Metzger, L. C., Scrignari, T. & Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347, 63–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Kjos, M. et al. Expression of Streptococcus pneumoniae bacteriocins is induced by antibiotics via regulatory interplay with the competence system. PLoS Pathog. 12, e1005422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wholey, W. Y., Kochan, T. J., Storck, D. N. & Dawid, S. Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation. PLoS Pathog. 12, e1005413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipp, E. K., Huq, A. & Colwell, R. R. Effects of global climate on infectious disease: the cholera model. Clin. Microbiol. Rev. 15, 757–770 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C.-Y. & Schoolnik, G. K. Chitin induces natural competence in Vibrio cholerae. Science 310, 1824–1827 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Blokesch, M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ. Microbiol. 14, 1898–1912 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8, e1002778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, R. et al. Direct regulation of the natural competence regulator gene tfoX by cyclic AMP (cAMP) and cAMP receptor protein (CRP) in Vibrios. Sci. Rep. 5, 14921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, X. & Roseman, S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc. Natl Acad. Sci. USA 101, 627–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Meibom, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dalia, A. B., Lazinski, D. W. & Camilli, A. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5, e01028-13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto, S. et al. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol. Microbiol. 91, 326–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto, S. et al. Identification of a chitin-Induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J. Bacteriol. 193, 1953–1965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redfield, R. J. sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J. Bacteriol. 173, 5612–5618 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 17987–17992 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Watve, S. S., Thomas, J. & Hammer, B. K. CytR is a global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS ONE 10, e0138834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jobling, M. G. & Holmes, R. K. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26, 1023–1034 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Papenfort, K. & Bassler, B. L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lo Scrudato, M. & Blokesch, M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 41, 3644–3658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seitz, P. & Blokesch, M. DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. mBio 5, e01409-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seitz, P. et al. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet. 10, e1004066 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blokesch, M. & Schoolnik, G. K. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J. Bacteriol. 190, 7232–7240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 193, 4914–4924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell–cell communication. Nature 437, 750–753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pereira, C. S., Thompson, J. A. & Xavier, K. B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 37, 156–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Higgins, D. A. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ng, W. L. et al. Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol. Microbiol. 79, 1407–1417 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Antonova, E. S. & Hammer, B. K. Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol. Lett. 322, 68–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Brugger, S. D., Frey, P., Aebi, S., Hinds, J. & Muhlemann, K. Multiple colonization with S. pneumoniae before and after introduction of the seven-valent conjugated pneumococcal polysaccharide vaccine. PLoS ONE 5, e11638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Teo, S. M. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17, 704–715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wyllie, A. L. et al. Streptococcus pneumoniae in saliva of Dutch primary school children. PLoS ONE 9, e102045 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prina, E., Ranzani, O. T. & Torres, A. Community-acquired pneumonia. Lancet 386, 1097–1108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martin, B. et al. ComE/ComEP interplay dictates activation or extinction status of pneumococcal X-state (competence). Mol. Microbiol. 87, 394–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 8, E15 (2017).

    Article  CAS  Google Scholar 

  47. Prudhomme, M., Attaiech, L., Sanchez, G., Martin, B. & Claverys, J. P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313, 89–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Moreno-Gamez, S. et al. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. (in the press).

  49. Prudhomme, M., Berge, M., Martin, B. & Polard, P. Pneumococcal competence coordination relies on a cell-contact sensing mechanism. PLoS Genet. 12, e1006113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, E. L., Evans, B. A., Cornejo, O. E., Roberts, I. S. & Rozen, D. Pherotype polymorphism in Streptococcus pneumoniae and its effects on population structure and recombination. Preprint at bioRxivhttp://dx.doi.org/10.1101/070011 (2016).

  51. Shanker, E. et al. Pheromone recognition and selectivity by ComR proteins among Streptococcus species. PLoS Pathog. 12, e1005979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Talagas, A. et al. Structural insights into streptococcal competence regulation by the cell-to-cell communication system ComRS. PLoS Pathog. 12, e1005980 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matthey, N. & Blokesch, M. The DNA-uptake process of naturally competent Vibrio cholerae. Trends Microbiol. 24, 98–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Engelmoer, D. J. & Rozen, D. E. Competence increases survival during stress in Streptococcus pneumoniae. Evolution 65, 3475–3485 (2011).

    Article  PubMed  Google Scholar 

  55. Mell, J. C. & Redfield, R. J. Natural competence and the evolution of DNA uptake specificity. J. Bacteriol. 196, 1471–1483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ambur, O. H., Engelstadter, J., Johnsen, P. J., Miller, E. L. & Rozen, D. E. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Phil. Trans. R. Soc. B 371, 20150528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, e1002394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dalia, A. B., Seed, K. D., Calderwood, S. B. & Camilli, A. A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc. Natl Acad. Sci. USA 112, 10485–10490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chandler, M. S. The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc. Natl Acad. Sci. USA 89, 1626–1630 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Redfield, R. J. et al. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J. Mol. Biol. 347, 735–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Hülter, N. et al. Costs and benefits of natural transformation in Acinetobacter baylyi. BMC Microbiol. 17, 34 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Redfield, R. J. Do bacteria have sex? Nat. Rev. Genet. 2, 634–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Redfield, R. J. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119, 213–221 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chun, J. et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc. Natl Acad. Sci. USA 106, 15442–15447 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chaguza, C., Cornick, J. E. & Everett, D. B. Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae. Comput. Struct. Biotechnol. J. 13, 241–247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chaguza, C. et al. Recombination in Streptococcus pneumoniae lineages increase with carriage duration and size of the polysaccharide capsule. mBio 7, e01053-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chewapreecha, C. et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 46, 305–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coffey, T. J. et al. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol. Microbiol. 5, 2255–2260 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Brueggemann, A. B., Pai, R., Crook, D. W. & Beall, B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 3, e168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brooks, T. M., Unterweger, D., Bachmann, V., Kostiuk, B. & Pukatzki, S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J. Biol. Chem. 288, 7618–7625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. English, G. et al. New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol. 86, 921–936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Vettiger, A. & Basler, M. Type VI secretion system substrates are transferred and reused among sister cells. Cell 167, 99–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Unterweger, D. et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat. Commun. 5, 3549 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Salomon, D. et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11, e1005128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmad, V. et al. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int. J. Antimicrob. Agents 49, 1–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins — a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Egan, K. et al. Bacteriocins: novel solutions to age old spore-related problems? Front. Microbiol. 7, 461 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Nes, I. F., Diep, D. B. & Holo, H. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189, 1189–1198 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Hoover, S. E. et al. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 that regulates a lantibiotic biosynthesis gene cluster. Mol. Microbiol. 97, 229–243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lux, T., Nuhn, M., Hakenbeck, R. & Reichmann, P. Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae. J. Bacteriol. 189, 7741–7751 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dawid, S., Roche, A. M. & Weiser, J. N. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun. 75, 443–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Maricic, N., Anderson, E. S., Opipari, A. E., Yu, E. A. & Dawid, S. Characterization of a multipeptide lantibiotic locus in Streptococcus pneumoniae. mBio 7, e01656-15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kjos, M. et al. Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol. Microbiol. 92, 1177–1187 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Valente, C. et al. The blp locus of Streptococcus pneumoniae plays a limited role in the selection of strains that can cocolonize the human nasopharynx. Appl. Environ. Microbiol. 82, 5206–5215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnsborg, O., Eldholm, V., Bjornstad, M. L. & Havarstein, L. S. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol. Microbiol. 69, 245–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Ma, L. S., Hachani, A., Lin, J. S., Filloux, A. & Lai, E. M. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16, 94–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bondage, D. D., Lin, J. S., Ma, L. S., Kuo, C. H. & Lai, E. M. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. Proc. Natl Acad. Sci. USA 113, E3931–E3940 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hasan, N. A. et al. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc. Natl Acad. Sci. USA 109, E2010–E2017 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kreth, J., Merritt, J., Shi, W. & Qi, F. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol. 57, 392–404 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Perry, J. A., Jones, M. B., Peterson, S. N., Cvitkovitch, D. G. & Levesque, C. M. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol. Microbiol. 72, 905–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reck, M., Tomasch, J. & Wagner-Dobler, I. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11, e1005353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heng, N. C., Tagg, J. R. & Tompkins, G. R. Competence-dependent bacteriocin production by Streptococcus gordonii DL1 (Challis). J. Bacteriol. 189, 1468–1472 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Miller, E. et al. Crosstalk and eavesdropping among quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. Preprint at bioRxivhttp://dx.doi.org/10.1101/087247 (2016).

  101. Miller, E. L., Abrudan, M. I., Roberts, I. S. & Rozen, D. E. Diverse ecological strategies are encoded by Streptococcus pneumoniae bacteriocin-like peptides. Genome Biol. Evol. 8, 1072–1090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Slager, J., Kjos, M., Attaiech, L. & Veening, J. W. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 157, 395–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Salomon, D. MIX and match: mobile T6SS MIX-effectors enhance bacterial fitness. Mob. Genet. Elements 6, e1123796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kirchberger, P. C., Unterweger, D., Provenzano, D., Pukatzki, S. & Boucher, Y. Sequential displacement of type VI secretion system effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci. Rep. 7, 45133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. de Vries, J. & Wackernagel, W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl Acad. Sci. USA 99, 2094–2099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Prudhomme, M., Libante, V. & Claverys, J. P. Homologous recombination at the border: insertion–deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 99, 2100–2105 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Meier, P. & Wackernagel, W. Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol. Microbiol. 48, 1107–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E. & Havarstein, L. S. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 187, 4338–4345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Havarstein, L. S., Martin, B., Johnsborg, O., Granadel, C. & Claverys, J. P. New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol. Microbiol. 59, 1297–1307 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Straume, D., Stamsas, G. A., Salehian, Z. & Havarstein, L. S. Overexpression of the fratricide immunity protein ComM leads to growth inhibition and morphological abnormalities in Streptococcus pneumoniae. Microbiology 163, 9–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Berg, K. H., Ohnstad, H. S. & Havarstein, L. S. LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J. Bacteriol. 194, 627–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Claverys, J. P. & Havarstein, L. S. Cannibalism and fratricide: mechanisms and raisons d'etre. Nat. Rev. Microbiol. 5, 219–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Straume, D., Stamsas, G. A. & Havarstein, L. S. Natural transformation and genome evolution in Streptococcus pneumoniae. Infect. Genet. Evol. 33, 371–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Laurenceau, R. et al. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog. 9, e1003473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin, B. et al. Expression and maintenance of ComD–ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol. Microbiol. 75, 1513–1528 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Metzger, L. C. et al. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep. 15, 951–958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Joshi, A. et al. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol. 25, 267–279 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those researchers whose work was not cited in this Opinion article owing to space limitations and the primary focus on the link between competence induction and kin-discriminated neighbour predation. Work in the Veening laboratory is supported by the European Molecular Biology Organization (EMBO) Young Investigator Program, a VIDI fellowship (grant 864.12.001) from the Netherlands Organization for Scientific Research, Earth and Life Sciences (NWO-ALW), and European Research Council Starting Grant 337399-PneumoCell. Work in the Blokesch laboratory is funded by the Swiss Federal Institute of Technology Lausanne (EPFL), the Swiss National Science Foundation (grant 31003A_162551 and NRP72 program grant 407240_167061) and the European Research Council (ERC; starting grant 309064-VIR4ENV).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan-Willem Veening or Melanie Blokesch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veening, JW., Blokesch, M. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 15, 621–629 (2017). https://doi.org/10.1038/nrmicro.2017.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.66

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology