Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prokaryotic cytoskeletons: protein filaments organizing small cells

Key Points

  • Bacteria and archaea use protein filament systems to organize cellular processes in time and space. Filaments can act as static scaffolds or as dynamic motors.

  • In some cases, these filament systems function analogously to components of the eukaryotic cytoskeleton, and the term 'prokaryotic cytoskeletons' has been adopted and broadened to include many different filament systems in small cells.

  • Many of the proteins that form these filaments fall into a small number of groups. The three largest and most-studied groups are the actin superfamily, the tubulin superfamily and filaments formed by coiled coil proteins.

  • Within a filament family, the structural basis of filament formation is typically conserved, whereas the biological functions of the related filaments are often divergent. This observation is important for our understanding of ancient evolutionary events and processes.

  • Remarkable progress has been made in understanding how filament systems function, although in most cases, the molecular mechanisms remain unclear. Structural biology, cryo-electron tomography of cells and advanced light microscopy methods are making important contributions to our mechanistic understanding.

  • An emerging theme is that although some filaments function by forming large filaments, in many cases, short filaments formed from tens of monomers function in a highly dynamic way to organize local processes.

Abstract

Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tubulin superfamily.
Figure 2: Actin superfamily.
Figure 3: Towards a structural understanding of diverse prokaryotic cytoskeletal filaments.

Similar content being viewed by others

References

  1. Bi, E. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    Article  PubMed  Google Scholar 

  5. Mukherjee, A., Dai, K. & Lutkenhaus, J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl Acad. Sci. USA 90, 1053–1057 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, X. & Lutkenhaus, J. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol. Microbiol. 21, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992). This study provids the first evidence, from sequence, that FtsA and MreB are related to eukaryotic actin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001). This study provides structural evidence that MreB is a member of the actin superfamily.

    Article  CAS  PubMed  Google Scholar 

  9. Jones, L. J. F., Carballido-López, R. & Errington, J. Control of cell shape in bacteria. Cell 104, 913–922 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705–713 (2003). This paper reports the discovery of crescentin and the first demonstration that coiled coil proteins could have cytoskeletal roles in prokaryotes.

    Article  CAS  PubMed  Google Scholar 

  11. Derman, A. I. et al. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol. Microbiol. 73, 534–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ettema, T. J. G., Lindås, A.-C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011). This paper reports the discovery of crenactin and a careful survey of actin superfamily members across bacteria and archaea.

    Article  CAS  PubMed  Google Scholar 

  14. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Szwedziak, P., Wang, Q., Freund, S. M. & Löwe, J. FtsA forms actin-like protofilaments. EMBO J. 31, 2249–2260 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartlett, T. M. et al. A periplasmic polymer curves Vibrio cholerae and promotes pathogenesis. Cell 168, 172–185.e15 (2017). This article reports the discovery and characterization of CrvA, which forms a cytoskeleton within the periplasm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kühn, J. et al. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J. 29, 327–339 (2010). This study identifies the bactofilin class as being widespread in bacteria and characterizes a pair of bactofilins in Caulobacter.

    Article  PubMed  CAS  Google Scholar 

  18. Ramamurthi, K. S. & Losick, R. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol. Cell 31, 406–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amos, L. A. & Löwe, J. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 1–26 (Springer International Publishing, 2017).

    Book  Google Scholar 

  20. Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Mol. Biol. 5, 451–458 (1998). A comparison and analysis of the then recently solved FtsZ and tubulin structures establishing the clear relatedness of the two proteins.

    Article  CAS  Google Scholar 

  21. Erickson, H. P., Anderson, D. E. & Osawa, M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindås, A.-C. & Bernander, R. The cell cycle of archaea. Nat. Rev. Microbiol. 11, 627–638 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Haeusser, D. P. & Margolin, W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol. 14, 305–319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017). This study images the divisome and peptidoglycan in live Bacillus subtilis , which supported a model for division in which peptidoglycan remodelling activities are propelled around the division plane by treadmilling FtsZ filaments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, X. et al. GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355, 744–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loose, M. & Mitchison, T. J. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 16, 38–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Strauss, M. P. et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLOS Biol. 10, e1001389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coltharp, C., Buss, J., Plumer, T. M. & Xiao, J. Defining the rate-limiting processes of bacterial cytokinesis. Proc. Natl Acad. Sci. USA 113, E1044–E1053 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagstaff, J. M. et al. A polymerization-associated structural switch in FtsZ that enables treadmilling of model filaments. mBio 8, e00254–00217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szwedziak, P., Wang, Q., Bharat, T. A. M., Tsim, M. & Löwe, J. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3, e04601 (2015).

    Article  Google Scholar 

  31. Yao, Q. et al. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. EMBO J. 36, 1577–1589 (2017). This study performs cryo-ET of cells early in division from many species, making it clear that in many cases, constriction initiates asymmetrically, ruling out some models for division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaughan, S., Wickstead, B., Gull, K. & Addinall, S. G. Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J. Mol. Evol. 58, 19–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Osteryoung, K. W. & Pyke, K. A. Division and dynamic morphology of plastids. Annu. Rev. Plant Biol. 65, 443–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Kiefel, B. R., Gilson, P. R. & Beech, P. L. Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist 155, 105–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Richter, M. et al. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol. 189, 4899–4910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Müller, F. D. et al. The FtsZ-like protein ftszm of magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J. Bacteriol. 196, 650–659 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Aylett, C. H. S. & Duggin, I. G. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 393–417 (Springer International Publishing, 2017).

    Book  Google Scholar 

  39. Fink, G. & Aylett, C. H. S. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 323–356 (Springer International Publishing, 2017).

    Book  Google Scholar 

  40. Tinsley, E. & Khan, S. A. A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J. Bacteriol. 188, 2829–2835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Larsen, R. A. et al. Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev. 21, 1340–1352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kraemer, J. A. et al. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149, 1488–1499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fink, G. & Löwe, J. Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments. Proc. Natl Acad. Sci. USA 112, E1845–E1850 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Erb, M. L. et al. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 3, e03197 (2014).

    Article  PubMed Central  Google Scholar 

  46. Montabana, E. A. & Agard, D. A. Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis. Proc. Natl Acad. Sci. USA 111, 3407–3412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zehr, E. A. et al. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure 22, 539–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jenkins, C. et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl Acad. Sci. USA 99, 17049–17054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schlieper, D., Oliva, M. A., Andreu, J. M. & Löwe, J. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl Acad. Sci. USA 102, 9170–9175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pilhofer, M., Ladinsky, M. S., McDowall, A. W., Petroni, G. & Jensen, G. J. Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLOS Biol. 9, e1001213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deng, X. et al. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability. Proc. Natl Acad. Sci. USA 114, E5950–E5958 (2017). This study uses cryo-EM and total internal reflection fluorescence microscopy (TIRF) imaging to demonstrate the remarkable similarity in structure and behaviour of four-stranded bacterial minimicrotubules to eukayrotic counterparts.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct 7, 10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Makarova, K. S. & Koonin, E. V. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol. Direct 5, 33 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dominguez, R. & Holmes, K. C. Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Errington, J. Bacterial morphogenesis and the enigmatic MreB helix. Nat. Rev. Microbiol. 13, 241–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Szwedziak, P. & Löwe, J. Do the divisome and elongasome share a common evolutionary past? Curr. Opin. Microbiol. 16, 745–751 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. van den Ent, F., Izoré, T., Bharat, T. A., Johnson, C. M. & Löwe, J. Bacterial actin MreB forms antiparallel double filaments. eLife 3, e02634 (2014). This study reports evidence to show that MreB forms antiparallel double filaments in cells, which places important constraints on how it can function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Billaudeau, C. et al. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat. Commun. 8 15370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    Article  PubMed  CAS  Google Scholar 

  62. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011). One of several papers imaging MreB and associated enzymes in live cells that shows that short MreB filaments move rapidly around the circumference of the cell, powered by cell wall synthesis, in contradiction of then prevailing ideas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teeffelen, S. van et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fenton, A. K., Lambert, C., Wagstaff, P. C. & Sockett, R. E. Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J. Bacteriol. 192, 1299–1311 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Kawai, Y., Asai, K. & Errington, J. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Mol. Microbiol. 73, 719–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Jacquier, N., Frandi, A., Pillonel, T., Viollier, P. H. & Greub, G. Cell wall precursors are required to organize the chlamydial division septum. Nat. Commun. 5, 3578 (2014).

    Article  PubMed  CAS  Google Scholar 

  67. Ouellette, S. P., Karimova, G., Subtil, A. & Ladant, D. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol. Microbiol. 85, 164–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Em, M. et al. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J. 29, 315–326 (2010).

    Article  CAS  Google Scholar 

  69. Schumacher, D. & Søgaard-Andersen, L. Regulation of cell polarity in motility and cell division in Myxococcus xanthus. Annu. Rev. Microbiol. 71, 61–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Luciano, J. et al. Emergence and modular evolution of a novel motility machinery in bacteria. PLOS Genet. 7, e1002268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Trachtenberg, S. et al. Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane. J. Mol. Biol. 378, 778–789 (2008).

    Article  PubMed  CAS  Google Scholar 

  72. Gitai, Z., Dye, N. A., Reisenauer, A., Wachi, M. & Shapiro, L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Shiomi, D. & Margolin, W. Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol. Microbiol. 66, 1396–1415 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ent, F. van den & Löwe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Osawa, M. & Erickson, H. P. Liposome division by a simple bacterial division machinery. Proc. Natl Acad. Sci. USA 110, 11000–11004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Krupka, M. et al. Escherichia coli FtsA. forms lipid-bound minirings that antagonize lateral interactions between FtsZ. protofilaments. Nat. Commun. 8, 15957 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Katzmann, E. et al. Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol. Microbiol. 82, 1316–1329 (2011).

    Article  PubMed  Google Scholar 

  80. Löwe, J., He, S., Scheres, S. H. W. & Savva, C. G. X-Ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proc. Natl Acad. Sci. USA 113, 13396–13401 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Toro-Nahuelpan, M. et al. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 14, 88 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Oda, T., Iwasa, M., Aihara, T., Maéda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Gayathri, P. et al. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338, 1334–1337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abreu, N. et al. Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 196, 3111–3121 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rioux, J.-B. et al. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLOS ONE 5, e9151 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gayathri, P. & Harne, S. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 299–321 (Springer International Publishing, 2017).

    Book  Google Scholar 

  87. Gerdes, K., Larsen, J. E. & Molin, S. Stable inheritance of plasmid R1 requires two different loci. J. Bacteriol. 161, 292–298 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Møller-Jensen, J. et al. Bacterial mitosis. Mol. Cell 12, 1477–1487 (2003).

    Article  PubMed  Google Scholar 

  89. Bharat, T. A. M., Murshudov, G. N., Sachse, C. & Löwe, J. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature 523, 106–110 (2015). This study is the culmination of many years of work on ParM, providing an essentially complete description of structure and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salje, J., Gayathri, P. & Löwe, J. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat. Rev. Microbiol. 8, 683–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Rivera, C. R., Kollman, J. M., Polka, J. K., Agard, D. A. & Mullins, R. D. Architecture and assembly of a divergent member of the ParM family of bacterial actin-like proteins. J. Biol. Chem. 286, 14282–14290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Popp, D. et al. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J. Biol. Chem. 285, 10130–10140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Becker, E. et al. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J. 25, 5919–5931 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Polka, J. K., Kollman, J. M., Agard, D. A. & Mullins, R. D. The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation. J. Bacteriol. 191, 6219–6230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Polka, J. K., Kollman, J. M. & Mullins, R. D. Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling. Proc. Natl Acad. Sci. USA 111, 2176–2181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tanaka, T. Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of Bacillus subtilis (natto) Plasmid pLS32. J. Bacteriol. 192, 1221–1230 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Donovan, C. et al. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res. 43, 5002–5016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuan, Y. et al. Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl. Environ. Microbiol. 81, 339–350 (2015).

    Article  PubMed  CAS  Google Scholar 

  99. Popp, D. et al. Novel actin-like filament structure from Clostridium tetani. J. Biol. Chem. 287, 21121–21129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Derman, A. I. et al. Alp7R regulates expression of the actin-like protein Alp7A in Bacillus subtilis. J. Bacteriol. 194, 2715–2724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schumacher, M. A. et al. Segrosome structure revealed by a complex of ParR with centromere DNA. Nature 450, 1268–1271 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Hara, F. et al. An actin homolog of the Archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin. J. Bacteriol. 189, 2039–2045 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Lindås, A.-C., Valegård, K. & Ettema, T. J. G. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 379–392 (Springer International Publishing, 2017).

    Book  Google Scholar 

  104. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat. Rev. Microbiol. 8, 731–741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Izoré, T., Kureisaite-Ciziene, D., McLaughlin, S. H. & Löwe, J. Crenactin forms actin-like double helical filaments regulated by arcadin-2. eLife 5, e21600 (2016). This paper reports the cryo-EM structure of a crenactin filament, which showed that it is extremely similar to eukaryotic actin.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin, L. & Thanbichler, M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton 70, 409–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Intermediate filament structure: the bottom-up approach. Curr. Opin. Cell Biol. 32, 65–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8, a018242 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Crick, F. H. C. Is α-keratin a coiled coil? Nature 170, 882–883 (1952).

    Article  CAS  PubMed  Google Scholar 

  112. Walshaw, J., Gillespie, M. D. & Kelemen, G. H. A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. J. Struct. Biol. 170, 202–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Snider, N. T. & Omary, M. B. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 15, 163–177 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cabeen, M. T., Herrmann, H. & Jacobs-Wagner, C. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton 68, 205–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Cabeen, M. T. et al. Bacterial cell curvature through mechanical control of cell growth. EMBO J. 28, 1208–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Charbon, G., Cabeen, M. T. & Jacobs-Wagner, C. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev. 23, 1131–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ingerson-Mahar, M., Briegel, A., Werner, J. N., Jensen, G. J. & Gitai, Z. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 12, 739–746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lynch, E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Mol. Biol. 24, 507–514 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kelemen, G. H. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 161–211 (Springer International Publishing, 2017).

    Book  Google Scholar 

  120. Bagchi, S., Tomenius, H., Belova, L. M. & Ausmees, N. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol. Microbiol. 70, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Holmes, N. A. et al. Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. Proc. Natl Acad. Sci. USA 110, E397–406 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Waidner, B. et al. A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLOS Pathog. 5, e1000669 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Specht, M., Schätzle, S., Graumann, P. L. & Waidner, B. Helicobacter pylori possesses four coiled-coil-rich proteins that form extended filamentous structures and control cell shape and motility. J. Bacteriol. 193, 4523–4530 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mazouni, K. et al. The Scc spirochetal coiled-coil protein forms helix-like filaments and binds to nucleic acids generating nucleoprotein structures. J. Bacteriol. 188, 469–476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Raddi, G. et al. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J. Bacteriol. 194, 1299–1306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang, R. et al. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J. Bacteriol. 186, 6168–6178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ward, M. J., Lew, H. & Zusman, D. R. Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol. Microbiol. 37, 1357–1371 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Berleman, J. E. et al. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLOS ONE 6, e23920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fenton, A. K., Hobley, L., Butan, C., Subramaniam, S. & Sockett, R. E. A coiled-coil-repeat protein 'Ccrp' in Bdellovibrio bacteriovorus prevents cellular indentation, but is not essential for vibroid cell morphology. FEMS Microbiol. Lett. 313, 89–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Cha, J. H. & Stewart, G. C. The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 179, 1671–1683 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12, 3419–3430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaval, K. G. & Halbedel, S. Architecturally the same, but playing a different game. Virulence 3, 406–407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Oliva, M. A. et al. Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J. 29, 1988–2001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stahlberg, H. et al. Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol. Microbiol. 52, 1281–1290 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Lenarcic, R. et al. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 28, 2272–2282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ramamurthi, K. S. & Losick, R. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc. Natl Acad. Sci. USA 106, 13541–13545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hempel, A. M. et al. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc. Natl Acad. Sci. USA 109, E2371–E2379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kang, C.-M. et al. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692–1704 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Saalbach, G. et al. Determination of phosphorylation sites in the DivIVA cytoskeletal protein of Streptomyces coelicolor by targeted LC–MS/MS. J. Proteome Res. 12, 4187–4192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fiuza, M. et al. Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum. J. Biol. Chem. 285, 29387–29397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Samson, R. Y., Dobro, M. J., Jensen, G. J. & Bell, S. D. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 357–377 (Springer International Publishing, 2017).

    Book  Google Scholar 

  142. Lindås, A.-C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. G. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dobro, M. J. et al. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol. Biol. Cell 24, 2319–2327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schöneberg, J., Lee, I.-H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell. Biol. 18, 5–17 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during Archaeal cell division. Mol. Cell 41, 186–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Barry, R. M. & Gitai, Z. Self-assembling enzymes and the origins of the cytoskeleton. Curr. Opin. Microbiol. 14, 704–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hay, N. A., Tipper, D. J., Gygi, D. & Hughes, C. A. Novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J. Bacteriol. 181, 2008–2016 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Koch, M. K., McHugh, C. A & Hoiczyk, E. BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol. Microbiol. 80, 1031–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sycuro, L. K. et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141, 822–833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shi, C. et al. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv. 1, e1501087 (2015). This paper reports the first bactofilin structure, solved de novo by solid state NMR, showing that the conserved core bactofilin sequence forms a right-handed β-helix.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hamoen, L. W., Meile, J.-C., De Jong, W., Noirot, P. & Errington, J. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol. 59, 989–999 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Duman, R. et al. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc. Natl Acad. Sci. USA 110, E4601–E4610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gola, S., Munder, T., Casonato, S., Manganelli, R. & Vicente, M. The essential role of SepF in mycobacterial division. Mol. Microbiol. 97, 560–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Gupta, S. et al. Essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division. Microbiology 161, 1627–1638 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Ishikawa, S., Kawai, Y., Hiramatsu, K., Kuwano, M. & Ogasawara, N. A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol. Microbiol. 60, 1364–1380 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Marbouty, M., Saguez, C., Cassier-Chauvat, C. & Chauvat, F. Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled Cyanobacterium Synechocystis strain PCC 6803. J. Bacteriol. 191, 6178–6185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bowman, G. R. et al. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945–955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134, 956–968 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Holmes, J. A. et al. Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proc. Natl Acad. Sci. USA 113, 12490–12495 (2016). This study provides evidence that PopZ functions by high-order self-association and by interactions with other proteins via intrinsically disordered regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Michie, K. A. & Löwe, J. Dynamic filaments of the bacterial cytoskeleton. Annu. Rev. Biochem. 75, 467–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Charon, N. W. et al. The unique paradigm of Spirochete motility and chemotaxis. Annu. Rev. Microbiol. 66, 349–370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Izard, J. et al. Tomographic reconstruction of treponemal cytoplasmic filaments reveals novel bridging and anchoring components: filament bridging and anchoring. Mol. Microbiol. 51, 609–618 (2003).

    Article  CAS  Google Scholar 

  164. You, Y. et al. Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum. J. Bacteriol. 178, 3177–3187 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dobro, M. J. et al. Uncharacterized bacterial structures revealed by electron cryotomography. J. Bacteriol. http://dx.doi.org/10.1128/JB.00100-17 (2017).

  166. Ghosal, D. & Löwe, J. Collaborative protein filaments. EMBO J. 34, 2312–2320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Löwe, J. & Amos, L. A. Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int. J. Biochem. Cell Biol. 41, 323–329 (2009).

    Article  PubMed  CAS  Google Scholar 

  168. Eun, Y.-J., Kapoor, M., Hussain, S. & Garner, E. C. Bacterial filament systems: towards understanding their emergent behavior and cellular functions. J. Biol. Chem. 290, 17181–17189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pilhofer, M. & Jensen, G. J. The bacterial cytoskeleton: more than twisted filaments. Curr. Opin. Cell Biol. 25, 125–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Rasmussen, C. G., Wright, A. J. & Müller, S. The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J. 75, 258–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bramkamp, M. et al. A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol. Microbiol. 70, 1556–1569 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Patrick, J. E. & Kearns, D. B. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol. Microbiol. 70, 1166–1179 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  PubMed  Google Scholar 

  176. He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zieske, K. & Schwille, P. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife http://dx.doi.org/10.7554/eLife.03949 (2014).

  178. Garner, E. C., Campbell, C. S., Weibel, D. B. & Mullins, R. D. Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science 315, 1270–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Oikonomou, C. M., Chang, Y.-W. & Jensen, G. J. A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Microbiol. 14, 205–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ma, X., Ehrhardt, D. W. & Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl Acad. Sci. USA 93, 12998–13003 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dai, K. & Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145–6151 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Medical Research Council (U105184326) and the Wellcome Trust (095514/Z/11/Z). J.W. acknowledges the Boehringer Ingelheim Fonds for his PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and J.L. contributed to researching data for the article. J.W. and J.L. substantially contributed to the discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jan Löwe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Endomembrane

Membrane binding internal compartments in eukaryotic cells.

Segregation

The active partitioning of a cellular component into daughter cells at division.

Superfamily

In proteins, the largest group that can be determined to have a common ancestor.

Protofilament

The one-subunit-thick filament formed by repeated linear interactions between monomers; also known as a strand.

Divisome

The set of proteins that divide a bacterial cell.

Peptidoglycan

The peptide-crosslinked sugar polymer that is the major component of bacterial cell walls.

Treadmilling

The situation in which a filament simultaneously grows and shrinks at opposite ends, leading to overall motion in the direction of growth without subunits moving.

Magnetotactic bacteria

Bacteria that are able to sense magnetic fields using tiny intracellular magnets.

Magnetosome

Inward bulges of the inner membrane in some bacteria that contain biomineralized iron compound crystals.

Horizontal gene transfer

A process in which genetic material is transferred between genomes by any means except whole genome reproduction.

Seam

The discontinuity in helical symmetry classically observed in 13 protofilament microtubules.

Dynamic instability

Rapid and stochastic switching between filament growth and depolymerization, an emergent property of some filaments, notably microtubules.

TACK superphylum

An archaeal clade that is a sister to the clade that includes the Asgard superphylum and the archaeal ancestor of eukaryotes. TACK: Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota.

Elongasome

The set of proteins that allow bacterial cells to grow longer.

Cytomotive filament

A filament that pushes or pulls other molecules in a dynamic way.

Gliding motility

A mode of bacterial self-propulsion that results in smooth motion over a surface. This is achieved by different mechanisms in different organisms.

Coiled coil

The structural motif formed by intertwined α-helices.

Forespores

Precursors of spores, a 'cell in a cell'.

Subtomogram averaging

The process of aligning subvolumes extracted from tomograms to improve signal:noise ratio and obtain high-resolution structural information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagstaff, J., Löwe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 16, 187–201 (2018). https://doi.org/10.1038/nrmicro.2017.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.153

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology