Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TETonic shift: biological roles of TET proteins in DNA demethylation and transcription

Key Points

  • Ten-eleven translocation (TET) proteins oxidize the methyl group of 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). They constitute a subset of TET–J-binding protein (JBP)-family proteins, which are Fe2+- and 2-oxoglutarate-dependent dioxygenases that oxidize methylpyrimidines.

  • Mammalian TET proteins contain two distinguishable domains, a CXXC domain that targets them to DNA, and a carboxy-terminal catalytic domain. The catalytic activity of TET proteins seems to be dispensable for some of their effects on gene transcription, probably because of their interaction with chromatin modifiers such as O-linked β-D-N-acetylglucosamine (O-GlcNAc) transferase and the switch-independent 3A (SIN3A) complex.

  • TET proteins and oxidized methylcytosines are implicated in several pathways of DNA demethylation. So far the two most well-established mechanisms are removal of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by thymine DNA glycosylase (TDG), and inhibition of DNA methyltransferase (DNMT)1-mediated maintenance DNA methylation.

  • Several methods have been developed to map the genomic distribution of 5hmC, including new technologies that allow mapping at single-base resolution. Recent studies have identified proteins that bind 5hmC and other oxidized methylcytosines.

  • Mice doubly-deficient in TET1 and TET2 survive until birth, indicating that these two proteins are dispensable for pluripotency. However recent evidence suggests a role for TET proteins in the reprogramming of fibroblasts to induced pluripotent stem (iPS) cells.

  • TET3 has an established role in methylcytosine oxidation in the male pronucleus in the zygote, whereas PGC7 prevents this process from occurring in the female pronucleus. Whether this process of mass oxidation is involved in DNA demethylation in the zygote is still unclear.

  • TET1 and TET2 mediate mass methylcytosine oxidation in primordial germ cells (PGCs). Although DNA demethylation in PGCs is a passive process for which TET1 and TET2 are largely dispensable, methylcytosine oxidation seems to be important for removing imprints during germ cell development.

Abstract

In many organisms, the methylation of cytosine in DNA has a key role in silencing 'parasitic' DNA elements, regulating transcription and establishing cellular identity. The recent discovery that ten-eleven translocation (TET) proteins are 5-methylcytosine oxidases has provided several chemically plausible pathways for the reversal of DNA methylation, thus triggering a paradigm shift in our understanding of how changes in DNA methylation are coupled to cell differentiation, embryonic development and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of TET-mediated demethylation.
Figure 2: Known protein domains of TET family members.
Figure 3: Methylation dynamics in mammalian development.

Similar content being viewed by others

References

  1. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). Discovery that TET proteins oxidize 5mC to 5hmC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iyer, L. M., Tahiliani, M., Rao, A. & Aravind, L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698–1710 (2009). Describes the evolution of TET proteins and the presence of TET homologues in non-metazoan species.

    Article  CAS  PubMed  Google Scholar 

  3. Ono, R. et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62, 4075–4080 (2002).

    CAS  PubMed  Google Scholar 

  4. Lorsbach, R. B. et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17, 637–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011). Shows that TET proteins can produce 5fC and 5caC and quantifies the level of modified cytosines in a range of cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011). Together with references 30 and 53, shows that TDG excises 5fC and 5caC. Demonstrates the presence of 5caC in mammalian DNA and shows that 5caC levels increase upon TDG depletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F. & Leonhardt, H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 38, e181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PloS one 5, e15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009). Together with reference 1, convincingly demonstrates the presence of 5hmC in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cimmino, L., Abdel-Wahab, O., Levine, R. L. & Aifantis, I. TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9, 193–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, H. & Zhang, Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25, 2436–2452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Branco, M. R., Ficz, G. & Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nature Rev. Genet. 13, 7–13 (2012).

    Article  CAS  Google Scholar 

  13. Williams, K., Christensen, J. & Helin, K. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep. 13, 28–35 (2012).

    Article  CAS  Google Scholar 

  14. Tan, L. & Shi, Y. G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139, 1895–1902 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bejar, R., Levine, R. & Ebert, B. L. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J. Clin. Oncol. 29, 504–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pronier, E. & Delhommeau, F. Role of TET2 mutations in myeloproliferative neoplasms. Curr. Hematol. Malignancy Rep. 7, 57–64 (2012).

    Article  Google Scholar 

  17. Mercher, T. et al. TET2, a tumor suppressor in hematological disorders. Biochim. Biophys. Acta 1825, 173–177 (2012).

    CAS  PubMed  Google Scholar 

  18. Iyer, L. M., Anantharaman, V., Wolf, M. Y. & Aravind, L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int. J. Parasitol. 38, 1–31 (2008). First paper to predict a 5mC oxidase and demethylase activity for TET1 (which was then termed CXXC6).

    Article  CAS  PubMed  Google Scholar 

  19. Gommers-Ampt, J. H. et al. β-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell 75, 1129–1136 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, Z. et al. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Nucleic Acids Res. 35, 2107–2115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loenarz, C. & Schofield, C. J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chem. Biol. 4, 152–156 (2008).

    Article  CAS  Google Scholar 

  22. Loenarz, C. & Schofield, C. J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36, 7–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Aravind, L. & Koonin, E. V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2, RESEARCH0007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borst, P. & Sabatini, R. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 62, 235–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. van Luenen, H. G. et al. Glucosylated hydroxymethyluracil, DNA base j, prevents transcriptional readthrough in leishmania. Cell 150, 909–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angewandte Chemie 50, 7008–7012 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Penn, N. W., Suwalski, R., O'Riley, C., Bojanowski, K. & Yura, R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 126, 781–790 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maiti, A. & Drohat, A. C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334–35338 (2011). Together with references 6 and 53, shows that TDG excises 5fC and 5caC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schiesser, S. et al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angewandte Chemie 51, 6516–6520 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Iyer, L. M., Abhiman, S. & Aravind, L. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101, 25–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Frauer, C. et al. Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS ONE 6, e16627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, J. H., Voo, K. S. & Skalnik, D. G. Identification and characterization of the DNA binding domain of CpG-binding protein. J. Biol. Chem. 276, 44669–44676 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Birke, M. et al. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 30, 958–965 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorgensen, H. F., Ben-Porath, I. & Bird, A. P. Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol. Cell. Biol. 24, 3387–3395 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blackledge, N. P. et al. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell 38, 179–190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allen, M. D. et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J. 25, 4503–4512 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, Y. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, H. et al. TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res. 20, 1390–1393 (2010).

    Article  PubMed  Google Scholar 

  41. Ko, M. et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497, 122–126 (2013). Describes the role of IDAX in regulating TET2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, Y. et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151, 1200–1213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hino, S. et al. Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol. Cell. Biol. 21, 330–342 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu, B. et al. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 439, 879–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Iyer, L. M., Abhiman, S., de Souza, R. F. & Aravind, L. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Nucleic Acids Res. 38, 5261–5279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bird, A. The dinucleotide CG as a genomic signalling module. J. Mol. Biol. 409, 47–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valinluck, V. & Sowers, L. C. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67, 946–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Kubosaki, A. et al. CpG site-specific alteration of hydroxymethylcytosine to methylcytosine beyond DNA replication. Biochem. Biophys. Res. Commun. 426, 141–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, L. et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chem. Biol. 8, 328–330 (2012). Together with references 6 and 30, shows that TDG excises 5fC and 5caC. This paper also shows a crystal structure of TDG with 5caC.

    Article  CAS  Google Scholar 

  54. Nabel, C. S. et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nature Chem. Biol. 8, 751–758 (2012).

    Article  CAS  Google Scholar 

  55. Song, C. X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201–1212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rai, K. et al. DNA demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell 142, 930–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cortazar, D. et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470, 419–423 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rangam, G., Schmitz, K. M., Cobb, A. J. & Petersen-Mahrt, S. K. AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PloS one 7, e43279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liutkeviciute, Z., Lukinavicius, G., Masevicius, V., Daujotyte, D. & Klimasauskas, S. Cytosine-5-methyltransferases add aldehydes to DNA. Nature Chem. Biol. 5, 400–402 (2009).

    Article  CAS  Google Scholar 

  66. Chen, C. C., Wang, K. Y. & Shen, C. K. The mammalian de novo DNA.methyltransferases, DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem. 287, 33116–33121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 112–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Hsieh, C. L. Evidence that protein binding specifies sites of DNA demethylation. Mol. Cell. Biol. 19, 46–56 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, I. G., Tomzynski, T. J., Ou, Q. & Hsieh, C. L. Modulation of DNA binding protein affinity directly affects target site demethylation. Mol. Cell. Biol. 20, 2343–2349 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  73. Szulwach, K. E. et al. Integrating 5-Hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, H. & Zhang, Y. Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells. Cell Cycle 10, 2428–2436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S. & Jacobsen, S. E. 5-hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hahn, M. A. et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3, 291–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Szulwach, K. E. et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neurosci. 14, 1607–1616 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013). Demonstrates that TET1 and TET2 oxidize 5mC en masse in PGCs.

    Article  CAS  PubMed  Google Scholar 

  81. Thomson, J. P. et al. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol. 13, R93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lian, C. G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raiber, E. A. et al. Genome-wide distribution of 5-formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 13, R69 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wu, H. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25, 679–684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within ctive genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Straussman, R. et al. Developmental programming of CpG island methylation profiles in the human genome. Nature Struct. Mol. Biol. 16, 564–571 (2009).

    Article  CAS  Google Scholar 

  88. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012). First genome-wide map of 5hmC at single-molecule resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsieh, C. L. Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14, 5487–5494 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Serandour, A. A. et al. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res. 40, 8255–8265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011). Describes the distribution of TET1 and 5hmC in ES cells and demonstrates, using several methods, that TET1 recruits SIN3A to target genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deplus, R. et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32, 645–655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, Q., Chen, Y., Bian, C., Fujiki, R. & Yu, X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493, 561–564 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147, 1498–1510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vella, P. et al. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol. Cell 49, 645–656 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Balasubramani, A. & Rao, A. O-GlcNAcylation and 5-methylcytosine oxidation: an unexpected association between OGT and TETs. Mol. Cell 49, 618–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fujiki, R. et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480, 557–560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5, e8888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nestor, C., Ruzov, A., Meehan, R. & Dunican, D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48, 317–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Jin, S. G., Kadam, S. & Pfeifer, G. P. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38, e125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okada, Y., Yamagata, K., Hong, K., Wakayama, T. & Zhang, Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463, 554–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wossidlo, M. et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29, 1877–1888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iqbal, K., Jin, S. G., Pfeifer, G. P. & Szabo, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Article  CAS  Google Scholar 

  113. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011). Together with reference 112, proves that TET3 is responsible for mass methylcytosine oxidation in the male pronucleus. Reference 113 also establishes the phenotype of TET3-deficient oocytes.

    Article  CAS  PubMed  Google Scholar 

  114. Inoue, A., Shen, L., Dai, Q., He, C. & Zhang, Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21, 1670–1676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nakamura, T. et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419 (2012). Shows that the maternal pronucleus of the zygote and select loci on the paternal pronucleus are protected from TET3-mediated oxidation by DPPA3.

    Article  CAS  PubMed  Google Scholar 

  116. Nakamura, T. et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nature Cell Biol. 9, 64–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Bortvin, A., Goodheart, M., Liao, M. & Page, D. C. Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev. Biol. 4, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Payer, B. et al. Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Inoue, A. & Zhang, Y. Replication-dependent loss of 5-hydoxymethylcytosine in mouse preimplantation embryos. Science 334, 194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hajkova, P. et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329, 78–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Inoue, A., Matoba, S. & Zhang, Y. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Res. 22, 1640–1649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dawlaty, M. M. et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9, 166–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dawlaty, M. M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013). Reports the phenotype of Tet1−/−Tet2−/− mice and cells and demonstrates defective imprinting in these mice.

  125. Koh, K. P. et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Vincent, J. J. et al. Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell stem cell 12, 470–478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hackett, J. A., Zylicz, J. J. & Surani, M. A. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 28, 164–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Yamaguchi, S. et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443–447 (2012). Demonstrates that TET1 positively regulates gene expression in PGCs and that TET1 deficiency impairs meiosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  131. Cox, J. L. & Rizzino, A. Induced pluripotent stem cells: what lies beyond the paradigm shift. Exp. Biol. Med. 235, 148–158 (2010).

    Article  CAS  Google Scholar 

  132. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Doege, C. A. et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Costa, Y. et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370–374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gao, Y. et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Otani, J. et al. Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4. J. Biol. Chem. 288, 6351–6362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tini, M. et al. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol. Cell 9, 265–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Cortazar, D., Kunz, C., Saito, Y., Steinacher, R. & Schar, P. The enigmatic thymine DNA glycosylase. DNA Repair 6, 489–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Kellinger, M. W. et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nature Struct. Mol. Biol. 19, 831–833 (2012).

    Article  CAS  Google Scholar 

  141. Jin, S. G., Wu, X., Li, A. X. & Pfeifer, G. P. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 39, 5015–5024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Matarese, F., Carrillo-de Santa Pau, E. & Stunnenberg, H. G. 5-Hydroxymethylcytosine: a new kid on the epigenetic block? Mol. Systems Biol. 7, 562 (2011).

    Article  Google Scholar 

  143. Hayatsu, H. & Shiragami, M. Reaction of bisulfite with the 5-hydroxymethyl group in pyrimidines and in phage DNAs. Biochemistry 18, 632–637 (1979).

    Article  CAS  PubMed  Google Scholar 

  144. Huang, Y., Pastor, W. A., Zepeda-Martinez, J. A. & Rao, A. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine. Nature Protoc. 7, 1897–1908 (2012).

    Article  CAS  Google Scholar 

  145. Pastor, W. A., Huang, Y., Henderson, H. R., Agarwal, S. & Rao, A. The GLIB technique for genome-wide mapping of 5-hydroxymethylcytosine. Nature Protoc. 7, 1909–1917 (2012).

    Article  CAS  Google Scholar 

  146. Robertson, A. B. et al. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 39, e55 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Song, C. X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnol. 29, 68–72 (2011).

    Article  CAS  Google Scholar 

  148. Zilberman, D. & Henikoff, S. Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Krueger, F., Kreck, B., Franke, A. & Andrews, S. R. DNA methylome analysis using short bisulfite sequencing data. Nature Methods 9, 145–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Rein, T., DePamphilis, M. L. & Zorbas, H. Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res. 26, 2255–2264 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Song, C. X. et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nature Methods 9, 75–77 (2012).

    Article  CAS  Google Scholar 

  153. Clark, T. A. et al. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol. 11, 4 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ko, M. et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shide, K. et al. TET2 is essential for survival and hematopoietic stem cell homeostasis. Leukemia 26, 2216–2223 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23, 58–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Kass, S. U., Landsberger, N. & Wolffe, A. P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Ng, H. H., Jeppesen, P. & Bird, A. Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell. Biol. 20, 1394–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fujita, N. et al. MCAF mediates MBD1-dependent transcriptional repression. Mol. Cell. Biol. 23, 2834–2843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Prokhortchouk, A. et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol. Cell. Biol. 26, 199–208 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C. A. & Zoghbi, H. Y. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 18, 2431–2442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Lee, J. H. & Skalnik, D. G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280, 41725–41731 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Choy, J. S. et al. DNA methylation increases nucleosome compaction and rigidity. J. Am. Chem. Soc. 132, 1782–1783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Watt, F. & Molloy, P. L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2, 1136–1143 (1988).

    Article  CAS  PubMed  Google Scholar 

  176. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Miranda, T. B. & Jones, P. A. DNA methylation: the nuts and bolts of repression. J. Cell. Physiol. 213, 384–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Brinkman, A. B. et al. Sequential ChIP–bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Acosta-Silva, C., Branchadell, V., Bertran, J. & Oliva, A. Mutual relationship between stacking and hydrogen bonding in DNA. Theoretical study of guanine-cytosine, guanine-5-methylcytosine, and their dimers. J. Phys. Chem. B 114, 10217–10227 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Thalhammer, A., Hansen, A. S., El-Sagheer, A. H., Brown, T. & Schofield, C. J. Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation. Chem. Commun. (Camb.) 47, 5325–5327 (2011).

    Article  CAS  Google Scholar 

  183. Borgel, J. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genet. 42, 1093–1100 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Gkountela, S. et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nature Cell Biol. 15, 113–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Evans and A. Clark for comments on the manuscript. This work was supported by US National Institutes of health (NIH) R01 grants AI44432, HD065812 and CA151535, grant RM-01729 from the California Institute of Regenerative Medicine, and Translational Research grant TRP 6187–12 from the Leukemia and Lymphoma Society (to A.R). Work in the laboratory of L.A. is supported by intramural funds of the National Library of Medicine, NIH. W.A.P. was supported by a predoctoral graduate research fellowship from the National Science Foundation and is currently supported by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William A. Pastor or Anjana Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

The CXXC domain of TET family members. (PDF 212 kb)

Related links

Related links

FURTHER INFORMATION

Anjana Rao's homepage

Protein Data Bank

Glossary

Dioxygenases

Enzymes that catalyse the addition of both oxygen atoms from molecular oxygen to one or two organic substrates.

DNA demethylation

Here, defined as replacement of 5-methylcytosine, the major methylated base in mammalian DNA, with unmodified cytosine, either directly or through intermediates.

CXXC domain

A Zn2+-chelating domain typified by the signature amino acid sequence CGXCXXC(X)NC, in which X represents any amino acid. CXXC domains in metazoans always contain two such sequences.

CpG sequences

Any instance of a cytosine followed immediately by a guanine on the same strand of DNA. Most DNA methylation in mammals occurs at CpG sites.

Base excision repair

(BER). A DNA repair pathway in which a DNA base is removed by a glycosylase enzyme and ultimately replaced by a new base.

Primordial germ cells

(PGCs). Precursors of mature germ cells (egg in female and sperm in male).

Click chemistry

Chemistry involving high-yield, highly specific reactions that are compatible with physiological conditions and maintain the integrity of biological molecules.

Sequencing coverage

Average number of times that a genome or a DNA region is sequenced using a next-generation sequencing instrument.

Zygote

Cell formed by fertilization of the oocyte (egg) with a sperm cell.

Imprinted locus

In epigenetics this describes a genomic region with a methylation mark that is present only on the maternally or paternally derived copy of an allele.

Trophectoderm

Cells that give rise to the placenta and other extra-embryonic tissue.

Embryoid bodies

Aggregates of cells formed by allowing embryonic stem cells to differentiate without contact with a solid surface.

Inbred mouse strain

Experiments are typically conducted using inbred mouse strains, in which all mice are genetically extremely similar. C57BL/6 is one of the most frequently used strains. 129P2/OlaHsd is another inbred mouse strain. The same mutation can have different effects in different backgrounds

Gene-trap

A mutant in which a gene is disrupted by the random insertion of transgenic DNA that contains a splice acceptor site followed by stop codons.

Meiotic synapsis

The event in meiosis prophase I in which homologous chromosomes align to allow recombination of genetic material (known as 'crossing over').

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor, W., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14, 341–356 (2013). https://doi.org/10.1038/nrm3589

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing