Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of PCNA–protein interactions for genome stability

Key Points

  • The sliding clamp proliferating cell nuclear antigen (PCNA) has a crucial role as a processivity factor for DNA replication in eukaryotic cells. PCNA provides a central platform for coordinating many replication-associated processes, such as DNA damage repair or bypass, chromatin establishment and sister chromatid cohesion.

  • A large number of cellular proteins compete for binding to a common surface on PCNA, necessitating tight, multilayered regulatory mechanisms that enable a fine-tuned interplay between PCNA and appropriate partner proteins at different stages of DNA replication and associated processes.

  • The PCNA-interacting protein (PIP) box, which is present in numerous proteins, is an important determinant for PCNA binding. Relative PCNA-binding affinities of PIP boxes establish a basic hierarchy of PCNA interactions.

  • Regulatory mechanisms controlling and modulating PCNA–protein interactions include post-translational modifications of PCNA and its associated proteins, accessory factors regulating PCNA–protein interactions and selective proteasome-dependent degradation of PCNA-bound proteins.

  • Mono- and polyubiquitylation of PCNA have key roles in enabling bypass of replication-associated DNA damage via translesion DNA synthesis and template switching, respectively.

  • Many new PCNA-binding proteins have been identified and characterized in recent years, broadening our understanding of the organization and regulation of PCNA-dependent processes underlying genome stability maintenance at the replication fork.

Abstract

Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein–protein and protein–DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding to a common surface on PCNA; hence these interactions need to be tightly regulated and coordinated to ensure proper chromosome replication and integrity. Control of PCNA–protein interactions is multilayered and involves post-translational modifications, in particular ubiquitylation, accessory factors and regulated degradation of PCNA-associated proteins. This regulatory framework allows cells to maintain a fine-tuned balance between replication fidelity and processivity in response to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCNA as a master coordinator of replication fork-associated processes.
Figure 2: Structural features of PCNA–protein interactions.
Figure 3: PCNA ubiquitylation facilitates the recruitment of DNA damage bypass factors to enable replication past DNA lesions.
Figure 4: SUMOylation of PCNA promotes recruitment of anti-recombination factors to the replication fork.
Figure 5: PCNA–protein interactions can be controlled by post-translational modification of PCNA and associated proteins.

Similar content being viewed by others

References

  1. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Indiani, C. & O'Donnell, M. The replication clamp-loading machine at work in the three domains of life. Nature Rev. Mol. Cell Biol. 7, 751–761 (2006).

    Article  CAS  Google Scholar 

  4. Kelch, B. A., Makino, D. L., O'Donnell, M. & Kuriyan, J. How a DNA polymerase clamp loader opens a sliding clamp. Science 334, 1675–1680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rauen, M., Burtelow, M. A., Dufault, V. M. & Karnitz, L. M. The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9. J. Biol. Chem. 275, 29767–29771 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Crabbe, L. et al. Analysis of replication profiles reveals key role of RFC–Ctf18 in yeast replication stress response. Nature Struct. Mol. Biol. 17, 1391–1397 (2010).

    Article  CAS  Google Scholar 

  10. Lee, K. Y., Fu, H., Aladjem, M. I. & Myung, K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J. Cell Biol. 200, 31–44 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, A. & O'Donnell, M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74, 283–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kong, X. P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the β-subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87, 297–306 (1996). References 13 and 14 describe the crystal structure of yeast PCNA and the structural basis of the p21CIP1/WAF1 PIP box binding to PCNA.

    Article  CAS  PubMed  Google Scholar 

  15. Ivanov, I., Chapados, B. R., McCammon, J. A. & Tainer, J. A. Proliferating cell nuclear antigen loaded onto double-stranded DNA: dynamics, minor groove interactions and functional implications. Nucleic Acids Res. 34, 6023–6033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mayanagi, K. et al. Architecture of the DNA polymerase B–proliferating cell nuclear antigen (PCNA)–DNA ternary complex. Proc. Natl Acad. Sci. USA 108, 1845–1849 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Georgescu, R. E. et al. Structure of a sliding clamp on DNA. Cell 132, 43–54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, H., Zhang, P., Liu, L. & Lee, M. Y. A novel PCNA-binding motif identified by the panning of a random peptide display library. Biochemistry 40, 4512–4520 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bruning, J. B. & Shamoo, Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-δ p66 subunit and flap endonuclease-1. Structure 12, 2209–2219 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Fridman, Y. et al. Subtle alterations in PCNA-partner interactions severely impair DNA replication and repair. PLoS Biol. 8, e1000507 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dionne, I., Nookala, R. K., Jackson, S. P., Doherty, A. J. & Bell, S. D. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Cell 11, 275–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Sakurai, S. et al. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J. 24, 683–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Xing, G., Kirouac, K., Shin, Y. J., Bell, S. D. & Ling, H. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Mol. Microbiol. 71, 678–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bubeck, D. et al. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res. 39, 3652–3666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayanagi, K. et al. Mechanism of replication machinery assembly as revealed by the DNA ligase–PCNA–DNA complex architecture. Proc. Natl Acad. Sci. USA 106, 4647–4652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilljam, K. M. et al. Identification of a novel, widespread, and functionally important PCNA-binding motif. J. Cell Biol. 186, 645–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ciccia, A. et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47, 396–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ulrich, H. D. Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair (Amst.) 8, 461–469 (2009).

    Article  CAS  Google Scholar 

  29. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002). Discovery that PCNA is modified by ubiquitylation in response to DNA damage and by SUMOylation during an unperturbed S phase.

    Article  CAS  PubMed  Google Scholar 

  30. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Rev. Mol. Cell Biol. 13, 141–152 (2012).

    Article  CAS  Google Scholar 

  32. Friedberg, E. C. Suffering in silence: the tolerance of DNA damage. Nature Rev. Mol. Cell Biol. 6, 943–953 (2005).

    Article  CAS  Google Scholar 

  33. Wang, S. C. et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nature Cell Biol. 8, 1359–1368 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, Y. et al. Proliferating cell nuclear antigen is protected from degradation by forming a complex with MutT homolog2. J. Biol. Chem. 284, 19310–19320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loeb, L. A. & Monnat, R. J. Jr. DNA polymerases and human disease. Nature Rev. Genet. 9, 594–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Karras, G. I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Daigaku, Y., Davies, A. A. & Ulrich, H. D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951–955 (2010). References 36 and 37 provided the demonstration that the RAD6 -dependent pathway of DNA damage tolerance can operate outside of S phase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jansen, J. G. et al. Mammalian polymerase zeta is essential for post-replication repair of UV-induced DNA lesions. DNA Repair (Amst.) 8, 1444–1451 (2009).

    Article  CAS  Google Scholar 

  39. Jansen, J. G. et al. Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells. Mol. Cell. Biol. 29, 3113–3123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell 30, 519–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Arakawa, H. et al. A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol. 4, e366 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Frampton, J. et al. Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol. Biol. Cell 17, 2976–2985 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leach, C. A. & Michael, W. M. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol. 171, 947–954 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watanabe, K. et al. Rad18 guides Pol η to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Chang, D. J., Lupardus, P. J. & Cimprich, K. A. Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J. Biol. Chem. 281, 32081–32088 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Tsuji, Y. et al. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells 13, 343–354 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Davies, A. A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H. D. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A. Mol. Cell 29, 625–636 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hibbert, R. G., Huang, A., Boelens, R. & Sixma, T. K. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc. Natl Acad. Sci. USA 108, 5590–5595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, S. et al. PCNA is ubiquitinated by RNF8. Cell Cycle 7, 3399–3404 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, J. R., Zeman, M. K., Chen, J. Y., Yee, M. C. & Cimprich, K. A. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol. Cell 42, 237–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Terai, K., Abbas, T., Jazaeri, A. A. & Dutta, A. CRL4Cdt2 E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol. Cell 37, 143–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Das-Bradoo, S. et al. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nature Cell Biol. 12, 74–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10, M111.013284 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hishiki, A. et al. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J. Biol. Chem. 284, 10552–10560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005). The identification of ubiquitin-binding domains in Y-family TLS polymerases that facilitate their recruitment to monoubiquitylated PCNA at blocked replication forks.

    Article  CAS  PubMed  Google Scholar 

  58. Plosky, B. S. et al. Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin. EMBO J. 25, 2847–2855 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol. 26, 8892–8900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo, C., Tang, T. S., Bienko, M., Dikic, I. & Friedberg, E. C. Requirements for the interaction of mouse Polκ with ubiquitin and its biological significance. J. Biol. Chem. 283, 4658–4664 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sabbioneda, S. et al. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol. Biol. Cell 19, 5193–5202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prakash, S., Johnson, R. E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Murakumo, Y. et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem. 276, 35644–35651 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hibbert, R. G. & Sixma, T. K. Intrinsic flexibility of ubiquitin on proliferating cell nuclear antigen (PCNA) in translesion synthesis. J. Biol. Chem. 287, 39216–39223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Freudenthal, B. D., Gakhar, L., Ramaswamy, S. & Washington, M. T. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nature Struct. Mol. Biol. 17, 479–484 (2010).

    Article  CAS  Google Scholar 

  68. Hendel, A. et al. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet. 7, e1002262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szuts, D., Marcus, A. P., Himoto, M., Iwai, S. & Sale, J. E. REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res. 36, 6767–6780 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang, K., Moldovan, G. L. & D'Andrea, A. D. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J. Biol. Chem. 285, 19085–19091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saugar, I., Parker, J. L., Zhao, S. & Ulrich, H. D. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res. 40, 245–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Crosetto, N. et al. Human Wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J. Biol. Chem. 283, 35173–35185 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ulrich, H. D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nature Rev. Mol. Cell Biol. 11, 479–489 (2010).

    Article  CAS  Google Scholar 

  74. Motegi, A. et al. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J. Cell Biol. 175, 703–708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl Acad. Sci. USA 105, 12411–12416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Unk, I. et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl Acad. Sci. USA 105, 3768–3773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Unk, I. et al. Human SHPRH is a ubiquitin ligase for Mms2–Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc. Natl Acad. Sci. USA 103, 18107–18112 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krijger, P. H. et al. HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair (Amst.) 10, 438–444 (2011).

    Article  CAS  Google Scholar 

  79. Yuan, J., Ghosal, G. & Chen, J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 47, 410–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weston, R., Peeters, H. & Ahel, D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 26, 1558–1572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Driscoll, R. & Cimprich, K. A. HARPing on about the DNA damage response during replication. Genes Dev. 23, 2359–2365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16125–16130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gohler, T., Munoz, I. M., Rouse, J. & Blow, J. J. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair (Amst.) 7, 775–787 (2008).

    Article  CAS  Google Scholar 

  84. Yang, X. H., Shiotani, B., Classon, M. & Zou, L. Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev. 22, 1147–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006). The discovery that the DUB USP1 counteracts UV light-induced PCNA monoubiquitylation in human cells.

    CAS  PubMed  Google Scholar 

  86. Gallego-Sanchez, A., Andres, S., Conde, F., San-Segundo, P. A. & Bueno, A. Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet. 8, e1002826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Faesen, A. C. et al. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol. 18, 1550–1561 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, K. Y. et al. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1. J. Biol. Chem. 285, 10362–10369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oestergaard, V. H. et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28, 798–809 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parker, J. L. et al. SUMO modification of PCNA is controlled by DNA. EMBO J. 27, 2422–2431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005). Describes the role of PCNA SUMOylation in recruiting Srs2 during S phase to inhibit recombination.

    Article  CAS  PubMed  Google Scholar 

  93. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Freudenthal, B. D., Brogie, J. E., Gakhar, L., Kondratick, C. M. & Washington, M. T. Crystal structure of SUMO-modified proliferating cell nuclear antigen. J. Mol. Biol. 406, 9–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Armstrong, A. A., Mohideen, F. & Lima, C. D. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483, 59–63 (2012). References 66, 67 and 97 provide structural studies of PCNA modified by ubiquitin and SUMO and reveal that their orientation is on the back face of PCNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Gali, H. et al. Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 40, 6049–6059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moldovan, G. L. et al. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell 45, 75–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Parnas, O. et al. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J. 29, 2611–2622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang, K. et al. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev. 25, 1847–1858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell 37, 396–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Parker, J. L., Bielen, A. B., Dikic, I. & Ulrich, H. D. Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae. Nucleic Acids Res. 35, 881–889 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nature Cell Biol. 8, 1246–1254 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Gohler, T., Sabbioneda, S., Green, C. M. & Lehmann, A. R. ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage. J. Cell Biol. 192, 219–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Henneke, G., Koundrioukoff, S. & Hubscher, U. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene 22, 4301–4313 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Scott, M. T., Morrice, N. & Ball, K. L. Reversible phosphorylation at the C-terminal regulatory domain of p21Waf1/Cip1 modulates proliferating cell nuclear antigen binding. J. Biol. Chem. 275, 11529–11537 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Havens, C. G. & Walter, J. C. Mechanism of CRL4Cdt2, a PCNA-dependent E3 ubiquitin ligase. Genes Dev. 25, 1568–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Arias, E. E. & Walter, J. C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biol. 8, 84–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Higa, L. A. et al. L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle 5, 1675–1680 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Hu, J. & Xiong, Y. An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4–Ddb1 ubiquitin ligase in response to DNA damage. J. Biol. Chem. 281, 3753–3756 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Nishitani, H. et al. Two E3 ubiquitin ligases, SCF–Skp2 and DDB1–Cul4, target human Cdt1 for proteolysis. EMBO J. 25, 1126–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Senga, T. et al. PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J. Biol. Chem. 281, 6246–6252 (2006). References 110–114 report the discovery that PCNA is required as a molecular platform for the ubiquitylation and subsequent degradation of a PIP box-dependent interactor, CDT1.

    Article  CAS  PubMed  Google Scholar 

  115. Oda, H. et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4Cdt2-mediated PCNA-dependent degradation during DNA damage. Mol. Cell 40, 364–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jorgensen, S. et al. SET8 is degraded via PCNA-coupled CRL4CDT2 ubiquitylation in S phase and after UV irradiation. J. Cell Biol. 192, 43–54 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Centore, R. C. et al. CRL4Cdt2-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol. Cell 40, 22–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Abbas, T. et al. CRL4Cdt2 regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol. Cell 40, 9–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raman, M., Havens, C. G., Walter, J. C. & Harper, J. W. A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction. Mol. Cell 44, 72–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Havens, C. G. & Walter, J. C. Docking of a specialized PIP box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol. Cell 35, 93–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Michishita, M. et al. Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4Cdt2-mediated proteolysis. Genes Cells 16, 12–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Havens, C. G. et al. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. J. Biol. Chem. 287, 11410–11421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shibutani, S. T. et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 15, 890–900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, S. H. & Michael, W. M. Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol. Cell 32, 757–766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jung, Y. S., Liu, G. & Chen, X. Pirh2 E3 ubiquitin ligase targets DNA polymerase η for 20S proteasomal degradation. Mol. Cell. Biol. 30, 1041–1048 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biol. 14, 1089–1098 (2012). The first systems-wide analysis of proteins regulated by ubiquitylation in response to DNA damage in human cells.

    Article  CAS  PubMed  Google Scholar 

  127. Soria, G., Speroni, J., Podhajcer, O. L., Prives, C. & Gottifredi, V. p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J. Cell Sci. 121, 3271–3282 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nature Struct. Mol. Biol. 18, 1345–1350 (2011).

    Article  CAS  Google Scholar 

  129. Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nature Cell Biol. 13, 1376–1382 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Mosbech, A. et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nature Struct. Mol. Biol. 19, 1084–1092 (2012).

    Article  CAS  Google Scholar 

  131. Davis, E. J. et al. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nature Struct. Mol. Biol. 19, 1093–1100 (2012).

    Article  CAS  Google Scholar 

  132. Ghosal, G., Leung, J. W., Nair, B. C., Fong, K. W. & Chen, J. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis. J. Biol. Chem. 287, 34225–34233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Centore, R. C., Yazinski, S. A., Tse, A. & Zou, L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol. Cell 46, 625–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Juhasz, S. et al. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res. 40, 10795–10808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zeman, M. K. & Cimprich, K. A. Finally, polyubiquitinated PCNA gets recognized. Mol. Cell 47, 333–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Xie, K., Doles, J., Hemann, M. T. & Walker, G. C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl Acad. Sci. USA 107, 20792–20797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Doles, J. et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl Acad. Sci. USA 107, 20786–20791 (2010). References 136 and 137 show that TLS has a major role in mediating acquired chemoresistance and that inhibition of TLS may provide a therapeutic target for tumours that are resistant to chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Punchihewa, C. et al. Identification of small molecule proliferating cell nuclear antigen (PCNA) inhibitor that disrupts interactions with PIP-box proteins and inhibits DNA replication. J. Biol. Chem. 287, 14289–14300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ulrich, H. D. Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett. 585, 2861–2867 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999). References 140 and 141 demonstrate that xeroderma pigmentosum variant is caused by mutations in the gene encoding Pol η.

    Article  CAS  PubMed  Google Scholar 

  142. Guo, C. et al. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol. Cell 23, 265–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose important findings could not be cited owing to page limitations. They thank J. Lukas for critical reading of the manuscript. Work in the authors' laboratory is funded by grants from the Novo Nordisk Foundation, the Danish Medical Research Council, the Lundbeck Foundation and the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niels Mailand or Simon Bekker-Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1AXC

1PLQ

2ZVK

3L10

3V60

FURTHER INFORMATION

Ubiquitin Signaling Group

Glossary

AAA+ ATPase

Superfamily of proteins that use ATP hydrolysis to remodel or translocate macromolecules in diverse cellular processes such as DNA replication, protein degradation, membrane fusion and signal transduction.

Isothermal titration calorimetry

(ITC). Gold standard biophysical technique to quantitatively determine the thermodynamic parameters of molecular interactions in solution.

Writers

Enzymes that can add chemical modifications to DNA or proteins.

Readers

Factors that bind proteins or DNA only when certain chemical modifications are present (or absent). Readers often recognize similar modifications through particular protein domains.

RAD6 epistasis group

Genes required for post-replication repair in Saccharomyces cerevisiae, including RAD6, RAD18, RAD5, methyl methanesulphonate sensitive 2 (MMS2) and ubiquitin-conjugating enzyme 13 (UBC13) (all of which are enzymes involved in protein ubiquitylation), as well as proliferating cell nuclear antigen (PCNA) and translesion DNA synthesis polymerases.

E2 ubiquitin-conjugating enzyme

A family of enzymes (comprising 40 members in mammalian cells) that, in conjunction with an E3 ubiquitin ligase, mediates the transfer of activated ubiquitin from the E2 active site Cys to a Lys residue in a target protein.

Cisplatin

A platinum-containing chemotherapeutic drug (cis-diamminedichloropltinum(II)) that induces DNA crosslinks (primarily intrastrand crosslinks and to a lesser extent interstrand crosslinks).

Erasers

Enzymes that can removechemical modifications from DNA or proteins.

UvrD-like domain

Domain found in a wide range of proteins that belong to the UvrD-like DNA helicase family, which are ATPases that unwind DNA with a 3′-5′ polarity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mailand, N., Gibbs-Seymour, I. & Bekker-Jensen, S. Regulation of PCNA–protein interactions for genome stability. Nat Rev Mol Cell Biol 14, 269–282 (2013). https://doi.org/10.1038/nrm3562

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing