Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trithorax group proteins: switching genes on and keeping them active

Key Points

  • Trithorax group (TrxG) proteins have been genetically defined as antagonistic regulators of Polycomb group (PcG) proteins, which maintain cellular memory. Now, we know that the TrxG proteins are a heterogeneous group that is additionally involved in tumorigenesis, cell cycle control, stem cell renewal, cell fate determination and differentiation.

  • TrxG proteins modify or remodel histones to activate genes and keep them active. They are recruited to their target genes by specific DNA sequences, pre-existing histone marks and non-coding RNAs.

  • TrxG complexes control the expression levels of major cell cycle regulators in a cell type-dependent manner. By targeting cyclin-dependent kinase inhibitors, TrxG proteins behave like essential integrators of cell cycle checkpoints.

  • TrxG activities are intimately connected with the main signalling pathways.

  • By regulating histone modification and nucleosome remodelling, TrxG proteins play an important part in the self-renewal and differentiation of embryonic stem cells, multiple types of adult stem cells and germ cells.

Abstract

Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classes of TrxG proteins and TrxG-containing complexes across species.
Figure 2: Multiple mechanisms recruit TrxG complexes to their target sites.
Figure 3: Histone crosstalk in TrxG-mediated gene activation.
Figure 4: Role of MLL proteins in cell cycle control.
Figure 5: Cell signalling and MLL.

Similar content being viewed by others

References

  1. Akam, M. The molecular basis for metameric pattern in the Drosophila embryo. Development 101, 1–22 (1987).

    CAS  PubMed  Google Scholar 

  2. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    CAS  PubMed  Google Scholar 

  3. Ingham, P. W. Trithorax and the regulation of homeotic gene expression in Drosophila: a historical perspective. Int. J. Dev. Biol. 42, 423–429 (1998).

    CAS  PubMed  Google Scholar 

  4. Ingham, P. W. Differential expression of bithorax complex genes in absence of the extra sex combs and trithorax genes. Nature 306, 591–593 (1983).

    CAS  PubMed  Google Scholar 

  5. Cavalli, G. & Paro, R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955–958 (1999).

    CAS  PubMed  Google Scholar 

  6. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuettengruber, B. & Cavalli, G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136, 3531–3542 (2009).

    CAS  PubMed  Google Scholar 

  8. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011). Demonstrates that the TrxG protein WDR5 interacts with the transcriptional regulator OCT4 to activate and maintain transcription of key self-renewal genes. This shows that TrxG complexes contribute to self-renewal and somatic cell reprogramming.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell 128, 459–475 (2007).

    CAS  PubMed  Google Scholar 

  10. Pullirsch, D. et al. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137, 935–943 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyagi, S. & Herr, W. E2F1 mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferases. EMBO J. 28, 3185–3195 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, H., Cheng, E. H. & Hsieh, J. J. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21, 2385–2398 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Siebold, A. P. et al. Polycomb repressive complex 2 and trithorax modulate Drosophila longevity and stress resistance. Proc. Natl Acad. Sci. USA 107, 169–174 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Srinivasan, S., Dorighi, K. M. & Tamkun, J. W. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet. 4, e1000217 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245–5254 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carrera, I., Janody, F., Leeds, N., Duveau, F. & Treisman, J. E. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc. Natl Acad. Sci. USA 105, 6644–6649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    CAS  PubMed  Google Scholar 

  20. Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    CAS  PubMed  Google Scholar 

  21. Wu, M. et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28, 7337–7344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, Y. & Hua, X. In search of tumor suppressing functions of menin. Mol. Cell. Endocrinol. 265–266, 34–41 (2007).

    PubMed  PubMed Central  Google Scholar 

  23. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

    CAS  PubMed  Google Scholar 

  25. Lubitz, S., Glaser, S., Schaft, J., Stewart, A. F. & Anastassiadis, K. Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol. Biol. Cell 18, 2356–2366 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    CAS  PubMed  Google Scholar 

  27. Goo, Y. H. et al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol. Cell. Biol. 23, 140–149 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, S. et al. Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases. Proc. Natl Acad. Sci. USA 103, 15392–15397 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Avramova, Z. Evolution and pleiotropy of TRITHORAX function in Arabidopsis. Int. J. Dev. Biol. 53, 371–381 (2009).

    CAS  PubMed  Google Scholar 

  30. Mohan, M., Lin, C., Guest, E. & Shilatifard, A. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nature Rev. Cancer 10, 721–728 (2010).

    CAS  Google Scholar 

  31. Sedkov, Y. et al. Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 426, 78–83 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fisher, K., Southall, S. M., Wilson, J. R. & Poulin, G. B. Methylation and demethylation activities of a C. elegans MLL-like complex attenuate RAS signalling. Dev. Biol. 341, 142–153 (2010).

    CAS  PubMed  Google Scholar 

  33. Simonet, T., Dulermo, R., Schott, S. & Palladino, F. Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. Dev. Biol. 312, 367–383 (2007).

    CAS  PubMed  Google Scholar 

  34. Pferdehirt, R. R., Kruesi, W. S. & Meyer, B. J. An MLL/COMPASS subunit functions in the C. elegans dosage compensation complex to target X chromosomes for transcriptional regulation of gene expression. Genes Dev. 25, 499–515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohan, M. et al. The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell. Biol. 31, 4310–4318 (2011). Describes the biochemical purification and characterization of the D. melanogaster COMPASS family.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Petruk, S. et al. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294, 1331–1334 (2001).

    CAS  PubMed  Google Scholar 

  37. Tie, F. et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136, 3131–3141 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bantignies, F., Goodman, R. H. & Smolik, S. M. Functional interaction between the coactivator Drosophila CREB-binding protein and ASH1, a member of the trithorax group of chromatin modifiers. Mol. Cell. Biol. 20, 9317–9330 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).

    CAS  PubMed  Google Scholar 

  42. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaspar-Maia, A. et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 863–868 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouazoune, K. & Brehm, A. ATP-dependent chromatin remodeling complexes in Drosophila. Chromosome Res. 14, 433–449 (2006).

    CAS  PubMed  Google Scholar 

  45. Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111, 991–1002 (2002).

    CAS  PubMed  Google Scholar 

  46. Aichinger, E., Villar, C. B., Di Mambro, R., Sabatini, S. & Kohler, C. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23, 1047–1060 (2011). Shows that the plant CHD3 chromatin remodeller PKL counteracts PcG-mediated repression to regulate meristem activity in the A. thaliana root.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by TrxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dejardin, J. & Cavalli, G. Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J. 23, 857–868 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fossati, A., Dolfini, D., Donati, G. & Mantovani, R. NF-Y recruits Ash2L to impart H3K4 trimethylation on CCAAT promoters. PLoS ONE 6, e17220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Demers, C. et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the β-globin locus. Mol. Cell 27, 573–584 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011). Shows that the HOTTIP lncRNA binds and targets WDR5–MLL complexes across the HOXA locus.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sarvan, S. et al. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain. Nature Struct. Mol. Biol. 18, 857–859 (2011). Reports the crystal structure of the TrxG protein ASH2L, revealing a previously unrecognized forkhead-like helix–wing–helix (HWH) domain, which directly binds DNA.

    CAS  Google Scholar 

  55. Liu, Y., Shao, Z. & Yuan, G. C. Prediction of Polycomb target genes in mouse embryonic stem cells. Genomics 96, 17–26 (2010).

    CAS  PubMed  Google Scholar 

  56. Lin, C. H., Lin, C., Tanaka, H., Fero, M. L. & Eisenman, R. N. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS ONE 4, e7839 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Muntean, A. G. et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17, 609–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tenney, K. et al. Drosophila Rtf1 functions in histone methylation, gene expression, and Notch signaling. Proc. Natl Acad. Sci. USA 103, 11970–11974 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, P. et al. Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol. Cell. Biol. 28, 2930–2940 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanchez-Elsner, T., Gou, D., Kremmer, E. & Sauer, F. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311, 1118–1123 (2006).

    CAS  PubMed  Google Scholar 

  62. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by Polycomb and Trithorax proteins. Cell 128, 735–745 (2007).

    CAS  PubMed  Google Scholar 

  63. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Milne, T. A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853–863 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    CAS  PubMed  Google Scholar 

  66. Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    CAS  PubMed  Google Scholar 

  67. Schnetz, M. P. et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19, 590–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruthenburg, A. J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, J. et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakanishi, S. et al. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nature Struct. Mol. Biol. 15, 881–888 (2008).

    CAS  Google Scholar 

  71. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–937 (2007).

    CAS  PubMed  Google Scholar 

  72. Kirmizis, A. et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928–932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    CAS  PubMed  Google Scholar 

  74. Hyllus, D. et al. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21, 3369–3380 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, J. S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell 142, 682–685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz, Y. B. et al. Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet. 6, e1000805 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 5, 373–377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pérez-Lluch, S. et al. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing. Nucleic Acids Res. 39, 4628–4639 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    CAS  PubMed  Google Scholar 

  81. Hsieh, J. J., Cheng, E. H. & Korsmeyer, S. J. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115, 293–303 (2003).

    CAS  PubMed  Google Scholar 

  82. Petruk, S., Smith, S. T., Sedkov, Y. & Mazo, A. Association of TrxG and PcG proteins with the bxd maintenance element depends on transcriptional activity. Development 135, 2383–2390 (2008).

    CAS  PubMed  Google Scholar 

  83. Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010). Shows that a common denominator of all MLL leukaemic fusions is their ability to bind the super elongation complex (SEC) in a constitutive mode.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I. & Cleary, M. L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17, 198–212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sobhian, B. et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol. Cell 38, 439–451 (2010). Links MLL fusion proteins to transcription-elongation components in HIV transactivation mediated by Tyr aminotransferase (TAT).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011). Demonstrates that the addiction of AML tumours to MLL–AF9 expression is molecularly triggered by direct maintenance of the MYB transcriptional pathway by MLL–AF9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Muyrers-Chen, I. et al. Expression of leukemic MLL fusion proteins in Drosophila affects cell cycle control and chromosome morphology. Oncogene 23, 8639–8648 (2004).

    CAS  PubMed  Google Scholar 

  88. Xia, Z. B. et al. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc. Natl Acad. Sci. USA 102, 14028–14033 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    CAS  PubMed  Google Scholar 

  90. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  91. Milne, T. A. et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA 102, 749–754 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Karnik, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Crabtree, J. S. et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl Acad. Sci. USA 98, 1118–1123 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ratineau, C. et al. Reduction of menin expression enhances cell proliferation and is tumorigenic in intestinal epithelial cells. J. Biol. Chem. 279, 24477–24484 (2004).

    CAS  PubMed  Google Scholar 

  95. Schnepp, R. W. et al. Menin induces apoptosis in murine embryonic fibroblasts. J. Biol. Chem. 279, 10685–10691 (2004).

    CAS  PubMed  Google Scholar 

  96. Schnepp, R. W. et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res. 64, 6791–6796 (2004).

    CAS  PubMed  Google Scholar 

  97. Kotake, Y., Zeng, Y. & Xiong, Y. DDB1–CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809–1814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Scacheri, P. C. et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2, e51 (2006).

    PubMed  PubMed Central  Google Scholar 

  99. Emerling, B. M. et al. MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene 21, 4849–4854 (2002).

    CAS  PubMed  Google Scholar 

  100. Sambasivan, R., Pavlath, G. K. & Dhawan, J. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts. J. Biosci. 33, 27–44 (2008).

    CAS  PubMed  Google Scholar 

  101. Sebastian, S. et al. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc. Natl Acad. Sci. USA 106, 4719–4724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tyagi, S., Chabes, A. L., Wysocka, J. & Herr, W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol. Cell 27, 107–119 (2007).

    CAS  PubMed  Google Scholar 

  103. Takeda, S. et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev. 20, 2397–2409 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Muchardt, C., Reyes, J. C., Bourachot, B., Leguoy, E. & Yaniv, M. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15, 3394–3402 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sif, S., Stukenberg, P. T., Kirschner, M. W. & Kingston, R. E. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12, 2842–2851 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, H., Takeda, S., Cheng, E. H. & Hsieh, J. J. Biphasic MLL takes helm at cell cycle control: implications in human mixed lineage leukemia. Cell Cycle 7, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  107. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    CAS  PubMed  Google Scholar 

  108. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    CAS  PubMed  Google Scholar 

  109. Kotake, Y. et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor gene. Genes Dev. 21, 49–54 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010). Demonstrates that MLL1 is a direct target of the ATR kinase in response to genotoxic stress and is an integrator of the mammalian S phase checkpoint.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, J. et al. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J. 24, 368–381 (2005).

    PubMed  PubMed Central  Google Scholar 

  114. Busygina, V. & Bale, A. E. Multiple endocrine neoplasia type 1 (MEN1) as a cancer predisposition syndrome: clues into the mechanisms of MEN1-related carcinogenesis. Yale J. Biol. Med. 79, 105–114 (2006).

    CAS  PubMed  Google Scholar 

  115. Jin, S. et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res. 63, 4204–4210 (2003).

    CAS  PubMed  Google Scholar 

  116. Kottemann, M. C. & Bale, A. E. Characterization of DNA damage-dependent cell cycle checkpoints in a menin-deficient model. DNA Repair (Amst.) 8, 944–952 (2009).

    CAS  Google Scholar 

  117. Sukhodolets, K. E. et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol. Cell. Biol. 23, 493–509 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gallo, A., Agnese, S., Esposito, I., Galgani, M. & Avvedimento, V. E. Menin stimulates homology-directed DNA repair. FEBS Lett. 584, 4531–4536 (2010).

    CAS  PubMed  Google Scholar 

  119. Armstrong, J. A. et al. Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta–notch signal transduction pathway in Drosophila. Genetics 170, 1761–1774 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kadam, S. & Emerson, B. M. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11, 377–389 (2003).

    CAS  PubMed  Google Scholar 

  121. Bejarano, F. & Milan, M. Genetic and epigenetic mechanisms regulating hedgehog expression in the Drosophila wing. Dev. Biol. 327, 508–515 (2009).

    CAS  PubMed  Google Scholar 

  122. Metzler, M. et al. Inv(11)(q21q23) fuses MLL to the Notch co-activator mastermind-like 2 in secondary T-cell acute lymphoblastic leukemia. Leukemia 22, 1807–1811 (2008).

    CAS  PubMed  Google Scholar 

  123. Nemoto, N. et al. Identification of a novel fusion gene MLL-MAML2 in secondary acute myelogenous leukemia and myelodysplastic syndrome with inv(11)(q21q23). Genes Chromosomes Cancer 46, 813–819 (2007).

    CAS  PubMed  Google Scholar 

  124. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genet. 41, 521–523 (2009). Shows that human somatic tumours are associated with deregulation of H3K27me3 and that UTX mutations are reverted by reintroduction of the UTX H3K27 demethylase activity, formally identifying UTX as a new human tumour suppressor gene.

    CAS  PubMed  Google Scholar 

  125. Herz, H. M. et al. The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol. Cell. Biol. 30, 2485–2497 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Saj, A. et al. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive Notch interaction network. Dev. Cell 18, 862–876 (2010).

    CAS  PubMed  Google Scholar 

  127. Martinez, A. M. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nature Genet. 41, 1076–1082 (2009).

    CAS  PubMed  Google Scholar 

  128. Cole, M. D. & Nikiforov, M. A. Transcriptional activation by the Myc oncoprotein. Curr. Top. Microbiol. Immunol. 302, 33–50 (2006).

    CAS  PubMed  Google Scholar 

  129. Secombe, J., Li, L., Carlos, L. & Eisenman, R. N. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng, S. W. et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nature Genet. 22, 102–105 (1999).

    CAS  PubMed  Google Scholar 

  131. Khan, A., Shover, W. & Goodliffe, J. M. Su(z)2 antagonizes auto-repression of Myc in Drosophila, increasing Myc levels and subsequent trans-activation. PLoS ONE 4, e5076 (2009).

    PubMed  PubMed Central  Google Scholar 

  132. Goodliffe, J. M., Cole, M. D. & Wieschaus, E. Coordinated regulation of Myc trans-activation targets by Polycomb and the Trithorax group protein Ash1. BMC Mol. Biol. 8, 40 (2007).

    PubMed  PubMed Central  Google Scholar 

  133. Caretti, G., Di Padova, M., Micales, B., Lyons, G. E. & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627–2638 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Rampalli, S. et al. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nature Struct. Mol. Biol. 14, 1150–1156 (2007).

    CAS  Google Scholar 

  135. Simone, C. et al. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genet. 36, 738–743 (2004).

    CAS  PubMed  Google Scholar 

  136. Gehani, S. S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886–900 (2010).

    CAS  PubMed  Google Scholar 

  137. Lau, P. N. & Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl Acad. Sci. USA 108, 2801–2806 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Drobic, B., Pérez-Cadahía, B., Yu, J., Kung, S. K. & Davie, J. R. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res. 38, 3196–3208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ansari, K. I. & Mandal, S. S. Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J. 277, 1790–1804 (2010).

    CAS  PubMed  Google Scholar 

  140. Tan, C. C., Walsh, M. J. & Gelb, B. D. Fgfr3 is a transcriptional target of Ap2δ and Ash2l-containing histone methyltransferase complexes. PLoS ONE 4, e8535 (2009).

    PubMed  PubMed Central  Google Scholar 

  141. Song, H., Spichiger-Haeusermann, C. & Basler, K. The ISWI-containing NURF complex regulates the output of the canonical Wingless pathway. EMBO Rep. 10, 1140–1146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 20, 4935–4943 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kugler, S. J., Gehring, E. M., Wallkamm, V., Kruger, V. & Nagel, A. C. The Putzig-NURF nucleosome remodeling complex is required for ecdysone receptor signaling and innate immunity in Drosophila melanogaster. Genetics 188, 127–139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kwon, S. Y. et al. The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev. Biol. 316, 538–547 (2008).

    CAS  PubMed  Google Scholar 

  145. Shen, X., Xiao, H., Ranallo, R., Wu, W. H. & Wu, C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112–114 (2003).

    CAS  PubMed  Google Scholar 

  146. Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    CAS  PubMed  Google Scholar 

  147. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  148. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    CAS  PubMed  Google Scholar 

  149. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    CAS  PubMed  Google Scholar 

  150. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    CAS  PubMed  Google Scholar 

  151. Tam, W. L. et al. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26, 2019–2031 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Fisher, C. L. & Fisher, A. G. Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr. Opin. Genet. Dev. 21, 140–146 (2011).

    CAS  PubMed  Google Scholar 

  153. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    CAS  PubMed  Google Scholar 

  154. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    CAS  PubMed  Google Scholar 

  155. Glaser, S. et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2, 5 (2009).

    PubMed  PubMed Central  Google Scholar 

  156. Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525 (2011). Shows that a core subunit of the SET1–MLL complexes, DPY30, is necessary to modulate H3K4me3 in vitro and its depletion alters ES cell differentiation toward the neural lineage.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Heuser, M. et al. Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 113, 1432–1443 (2009).

    CAS  PubMed  Google Scholar 

  158. Madan, V. et al. Impaired function of primitive hematopoietic cells in mice lacking the mixed-lineage-leukemia homolog MLL5. Blood 113, 1444–1454 (2009).

    CAS  PubMed  Google Scholar 

  159. Zhang, Y. et al. MLL5 contributes to hematopoietic stem cell fitness and homeostasis. Blood 113, 1455–1463 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Feng, J., Fouse, S. & Fan, G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr. Res. 61, 58R–63R (2007).

    CAS  PubMed  Google Scholar 

  161. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    CAS  PubMed  Google Scholar 

  163. Montgomery, R. L., Hsieh, J., Barbosa, A. C., Richardson, J. A. & Olson, E. N. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA 106, 7876–7881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Pereira, J. D. et al. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl Acad. Sci. USA 107, 15957–15962 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Burgold, T. et al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PloS ONE 3, e3034 (2008).

    PubMed  PubMed Central  Google Scholar 

  166. Lee, E. R., Murdoch, F. E. & Fritsch, M. K. High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells 25, 2191–2199 (2007).

    CAS  PubMed  Google Scholar 

  167. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Weishaupt, H., Sigvardsson, M. & Attema, J. L. Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 115, 247–256 (2010).

    CAS  PubMed  Google Scholar 

  169. Gan, T., Jude, C. D., Zaffuto, K. & Ernst, P. Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis. Leukemia 24, 1732–1741 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. McMahon, K. A. et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1, 338–345 (2007).

    CAS  PubMed  Google Scholar 

  171. Andreu-Vieyra, C. V. et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 8, e1000453 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. Chen, X., Hiller, M., Sancak, Y. & Fuller, M. T. Tissue-specific TAFs counteract Polycomb to turn on terminal differentiation. Science 310, 869–872 (2005).

    CAS  PubMed  Google Scholar 

  173. Li, T. & Kelly, W. G. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet. 7, e1001349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Xiao, Y. et al. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc. Natl Acad. Sci. USA 108, 8305–8310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kidder, B. L., Palmer, S. & Knott, J. G. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27, 317–328 (2009).

    CAS  PubMed  Google Scholar 

  176. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    CAS  PubMed  Google Scholar 

  177. Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kim, J. K. et al. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell. Biol. 21, 7787–7795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    CAS  PubMed  Google Scholar 

  181. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc. Natl Acad. Sci. USA 106, 5187–5191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  PubMed  Google Scholar 

  183. Landry, J. et al. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet. 4, e1000241 (2008).

    PubMed  PubMed Central  Google Scholar 

  184. Klebes, A. et al. Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, Trithorax group and lama genes. Development 132, 3753–3765 (2005).

    CAS  PubMed  Google Scholar 

  185. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 19 Oct 2011 (doi:10.1038/nature10572).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Simon, J. A. & Kingston, R. E. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol. 10, 697–708 (2009).

    CAS  Google Scholar 

  187. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).

    CAS  PubMed  Google Scholar 

  189. Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl Acad. Sci. USA 103, 6629–6634 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36, 970–983 (2009). Reports that MLL1 remains associated with genes during mitosis to render them rapidly activatable during the next interphase.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those whose recent publications we were unable to cite owing to space limitations. N.I. was supported by a long-term European Molecular Biology Organization fellowship and by a fellowship from the Human Frontier Science Program Organization. The research of C.G. was supported by grants from the European Research Council (ERC-2008-AdG no. 232947), the Centre national de la recherche scientifique, the European Network of Excellence EpiGeneSys, the Agence Nationale de la Recherche and the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Cavalli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Giacomo Cavalli's homepage

Glossary

Epigenetic

A form of gene expression maintenance in which the heritable state of gene activity neither requires the continuous presence of the initiating signal nor involves changes in the DNA sequence.

Homeobox genes

(HOX genes). A family of genes that encode transcription factors which are essential for patterning along the anterior–posterior body axis.

Homeotic transformations

The consequences of mutations that lead to the transformation of the identity of one body segment into the identity of another.

SET domain

(Su(var)3-9, Enhancer of Zeste, Trithorax). A motif 130 amino acids in length that provides histone methyltransferase activity. It is found in many chromatin-associated proteins, including some Trithorax group and Polycomb group proteins.

MYST

A family of histone acetyltransferases that is defined by the founding members Moz, Ybf2 (Sas3), Sas2 and Tip60.

RAS signalling

An intracellular signal transduction pathway involving RAS. RAS activates many signalling cascades involved in multiple developmental events controlling cell proliferation, migration and survival.

SWI/SNF

(Switch/sucrose nonfermentable). A chromatin-remodelling complex family that was first identified genetically in yeast as a group of genes required for mating type switching and growth on alternative sugar sources to sucrose. This complex is required for the transcriptional activation of 7% of the genome.

Bromodomain

A conserved protein module, which was first identified in the Drosophila melanogaster protein Brahma and has subsequently been found in many chromatin-associated proteins. This domain can recognize acetyl-Lys motifs.

SANT domain

A conserved histone-binding domain that takes its name from the proteins in which it was initially identified: Swi3, ADA2, N-CoR and TFIIB.

Nucleosome-remodelling factor

(NURF). A chromatin-remodelling complex identified in Drosophila melanogaster and belonging to the imitation switch subfamily.

Chromodomain

A motif of 60 amino acids that is found in many chromatin-associated proteins and forms a binding pocket for methylated histone residues.

Bivalent chromatin domains

Domains that are characterized by the juxtaposition of active and inactive epigenetic histone marks.

Plant homeodomain finger

(PHD finger). A PHD-linked zinc-finger that chelates double zinc ions. This protein motif is found in many chromatin regulators and binds histones in a methylation-dependent or -independent manner.

Trans histone code

This term describes the fact that post-translational modifications on one histone tail can influence those on another, even when they are located on different histones, resulting in a specific gene expression output.

CDKI

(Cyclin-dependent kinase inhibitor). Members of the CIP and KIP family of CDKIs (p21, p27 and p57) inhibit CDK2- and CDK1-containing complexes, and members of the INK4 family (p15, p16, p18 and p19) inhibit cyclin D-containing complexes. Expression of CDKIs generally causes growth arrest and, when CDKIs are acting as tumour suppressors, may cause cell cycle arrest and apoptosis.

SCF and APC/C

(Skp–cullin–F box and anaphase-promoting complex (also known as the cyclosome)). Multiprotein E3 ubiquitin ligase complexes that are involved in the recognition and ubiquitylation of specific cell cycle target proteins for proteasomal degradation.

E3 ubiquitin ligases

Enzymes that target specific proteins for degradation by the proteasome by causing the attachment of ubiquitin to Lys residues on their substrates.

Cellular transformation

A change undergone by animal cells, caused by escape from control mechanisms (for example, upon infection by a cancer-causing virus). Transformed cells have increased growth potential, alterations in cell surface, karyotypic abnormalities and the ability to invade and metastasize.

ATR

(Ataxia-telangiectasia- and RAD3-related). A caffeine-sensitive, DNA-activated protein kinase that is involved in DNA damage checkpoints.

Radioresistant DNA synthesis

(RDS). When mutant cells fail to repress the firing of DNA replication origins in the presence of ionizing radiation-induced DNA damage.

Notch signalling

This pathway is a highly conserved intercellular signalling mechanism that is essential not only for cell proliferation but also for numerous cell fate-specification events.

Extracellular signal-regulated kinase

(ERK). A protein involved in a mitogen-activated protein kinase signal transduction pathway that functions in cellular proliferation, differentiation and survival. Its inappropriate activation is a common occurrence in the human cancers.

Nucleosomal response

The rapid phosphorylation of histone H3 that occurs concomitantly with the induction of immediate early genes, which is mediated through alternative mitogen-activated protein kinase cascades.

WNT–β-catenin pathway

A signalling pathway involving widely conserved secreted signalling molecules of the Wingless family, which regulate many processes during animal development.

JAK–STAT

(Janus kinase–signal transducer and activator of transcription). A rapid signal transduction pathway used by a range of cytokines and growth factors. Binding of a cytokine or growth factor to its receptor activates cytoplasmic JAK, which then phosphorylates STAT and triggers its translocation into the nucleus, where it induces the transcription of specific genes.

Neural progenitor cells

(NPCs). A stem cell type found in adult neural tissue that can give rise to neuron and supporting cells (glia). During development, NPCs produce the enormous diversity of neurons and glia in the developing central nervous system, and they have been also shown to engage in the replacement of dying neurons.

Long-term HSCs

(LT-HSCs). Haematopoietic stem cells that have long-term regeneration capacities and can restore the haematopoietic system of an irradiated mouse over months.

Short-term HSCs

(ST-HSCs). Haematopoietic stem cells that, under normal circumstances, cannot renew themselves over a long term. They are also referred to as progenitor or precursor cells, as they are relatively immature cells that are precursors to a fully differentiated cell of the same tissue type.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuettengruber, B., Martinez, AM., Iovino, N. et al. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12, 799–814 (2011). https://doi.org/10.1038/nrm3230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing