Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nuclear pore complex: bridging nuclear transport and gene regulation

Key Points

  • The nuclear pore complex (NPC) mediates transport of all macromolecules between the nucleus and the cytoplasm. The structure of the NPC — a cylindrical ring-like structure lined with nucleoporins capable of binding to transport factors — governs its transport function.

  • Although transport is the primary function of the NPC, recent research has revealed that the NPC plays an important part in cellular functions taking place on either side of the nuclear envelope.

  • The nuclear basket is a distinct structure extending from the NPC into the nucleus. It is thought to have a role in many different functions, such as transcriptional control, small ubiquitin-related modifier (SUMO) homeostasis, cell cycle progression, chromatin organization and RNA biogenesis.

  • The basket seems to recruit and retain actively transcribed genes to the pore while excluding silenced heterochromatin from the transport channel. This mechanism would ensure efficient transport of messenger ribonucleoproteins (mRNPs) into the cytoplasm, in a manner similar to what was proposed in the 'gene gating hypothesis'.

  • Multiple components involved in the recruitment of active genes to the NPC also have a role in the proper processing, surveillance and export of mRNPs.

  • The cytoplasmic filaments of the NPC interact with the protein synthesis machinery and the cytoskeleton. They are thought to be involved in mediating the release of shuttling proteins from mRNPs, terminating transport and readying the cargo for further engagement in the cytoplasm.

  • Most nuclear and cytoplasmic functions of the NPC seem to increase the efficiency and integration of transport into the broader milieu of the cell.

Abstract

Although the nuclear pore complex (NPC) is best known for its primary function as the key regulator of molecular traffic between the cytoplasm and the nucleus, a growing body of experimental evidence suggests that this structure participates in a considerably broader range of cellular activities on both sides of the nuclear envelope. Indeed, the NPC is emerging as an important regulator of gene expression through its influence on the internal architectural organization of the nucleus and its apparently extensive involvement in coordinating the seamless delivery of genetic information to the cytoplasmic protein synthesis machinery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear pore complex structure.
Figure 2: The nuclear pore complex functions as a 'virtual gate'.
Figure 3: The function of the nuclear pore complex peripheral structures.
Figure 4: The gene expression path traverses the NPC.

Similar content being viewed by others

References

  1. Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21, 4–13 (2009).

    CAS  PubMed  Google Scholar 

  2. Brickner, J. H. Transcriptional memory at the nuclear periphery. Curr. Opin. Cell Biol. 21, 127–133 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Towbin, B. D., Meister, P. & Gasser, S. M. The nuclear envelope — a scaffold for silencing? Curr. Opin. Genet. Dev. 19, 180–186 (2009).

    CAS  PubMed  Google Scholar 

  4. Degrasse, J. A. et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8, 2119–2130 (2009). Proteomic analyses of NPC-containing fractions from a divergent eukaryote ( Trypanosoma brucei ) provide conclusive evidence that the general blueprint of NPC architecture was already established in the last common eukaryotic ancestor.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    CAS  PubMed  Google Scholar 

  6. Elad, N., Maimon, T., Frenkiel-Krispin, D., Lim, R. Y. & Medalia, O. Structural analysis of the nuclear pore complex by integrated approaches. Curr. Opin. Struct. Biol. 19, 226–232 (2009).

    CAS  PubMed  Google Scholar 

  7. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

    CAS  PubMed  Google Scholar 

  8. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007). Together with reference 7, this work describes the development of a computational method that combines a diverse set of biophysical and proteomic data to construct a comprehensive medium resolution three-dimensional map describing the relative arrangement of all components of the S. cerevisiae NPC.

    CAS  PubMed  Google Scholar 

  9. Brohawn, S. G., Partridge, J. R., Whittle, J. R. & Schwartz, T. U. The nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. D'Angelo, M. A., Anderson, D., Richard, E. & Hetzer, M. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312, 440–443 (2006).

    CAS  PubMed  Google Scholar 

  12. Makio, T. et al. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185, 459–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    PubMed  PubMed Central  Google Scholar 

  14. Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl Acad. Sci. USA 103, 2172–2177 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    CAS  PubMed  Google Scholar 

  16. Köhler, A. & Hurt, E. C. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Google Scholar 

  17. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol. 8, 195–208 (2007).

    CAS  Google Scholar 

  18. Akey, C. W. & Goldfarb, D. S. Protein import through the nuclear pore complex is a multistep process. J. Cell Biol. 109, 971–982 (1989).

    CAS  PubMed  Google Scholar 

  19. Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA 96, 9622–9627 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuersten, S., Ohno, M. & Mattaj, I. W. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol. 11, 497–503 (2001).

    CAS  PubMed  Google Scholar 

  21. Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell 8, 1814–1827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215–222 (1995).

    CAS  PubMed  Google Scholar 

  23. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).

    CAS  PubMed  Google Scholar 

  24. Denning, D. P. & Rexach, M. F. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins. Mol. Cell. Proteomics 6, 272–282 (2007).

    CAS  PubMed  Google Scholar 

  25. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002). Mass spectrometry analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).

    CAS  PubMed  Google Scholar 

  30. Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).

    CAS  PubMed  Google Scholar 

  31. Akey, C. W. Visualization of transport-related configurations of the nuclear pore transporter. Biophys. J. 58, 341–355 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    CAS  PubMed  Google Scholar 

  33. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Naure. Cell Biol. 6, 197–206 (2004).

    CAS  Google Scholar 

  35. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

    CAS  PubMed  Google Scholar 

  36. Peters, R. Translocation through the nuclear pore: Kaps pave the way. Bioessays 31, 466–477 (2009). Excellent introductory review describing current nuclear transport models in the light of the latest data obtained by single transporter recording, optical super-resolution microscopy and transport assays on artificial nanopores.

    CAS  PubMed  Google Scholar 

  37. Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

    CAS  PubMed  Google Scholar 

  38. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    CAS  PubMed  Google Scholar 

  40. Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    CAS  PubMed  Google Scholar 

  41. Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ader, C. et al. Amyloid-like interactions within nucleoporin FG hydrogels. Proc. Natl Acad. Sci. USA 107, 6281–6285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Macara, I. G. Transport into and out of the nucleus. Microbiol Mol. Biol. Rev. 65, 570–594 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Krishnan, V. V. et al. Intramolecular cohesion of coils mediated by phenylalanine–glycine motifs in the natively unfolded domain of a nucleoporin. PLoS Comput. Biol. 4, e1000145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao, L. & Schulten, K. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17, 449–459 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Timney, B. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175, 579–593 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol. 3, e125 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Engelhardt, P. & Pusa, K. Nuclear pore complexes: “press-stud” elements of chromosomes in pairing and control. Nature New Biol. 240, 163–166 (1972).

    CAS  PubMed  Google Scholar 

  49. Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985). The first formulation of the hypothesis that NPCs serve as gene-gating organelles that are capable of interacting specifically with transcriptionally active portions of the genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kehlenbach, R. H., Dickmanns, A., Kehlenbach, A., Guan, T. & Gerace, L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J. Cell Biol. 145, 645–657 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biol. 9, 788–796 (2007).

    CAS  PubMed  Google Scholar 

  53. Carmody, S. R. & Wente, S. R. mRNA nuclear export at a glance. J. Cell Sci. 122, 1933–1937 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Minakhina, S., Myers, R., Druzhinina, M. & Steward, R. Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport. BMC Cell Biol. 6, 32 (2005).

    PubMed  PubMed Central  Google Scholar 

  55. Hutten, S., Walde, S., Spillner, C., Hauber, J. & Kehlenbach, R. H. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J. Cell Sci. 122, 1100–1110 (2009).

    CAS  PubMed  Google Scholar 

  56. Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell 25, 327–330 (2007).

    CAS  PubMed  Google Scholar 

  57. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995).

    CAS  PubMed  Google Scholar 

  58. Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Saitoh, N. et al. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp. Cell Res. 312, 1418–1430 (2006).

    CAS  PubMed  Google Scholar 

  60. Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Radtke, K., Döhner, K. & Sodeik, B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell. Microbiol 8, 387–400 (2006).

    CAS  PubMed  Google Scholar 

  62. Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W. & Jans, D. A. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 8, 673–686 (2007).

    CAS  PubMed  Google Scholar 

  63. Singer, R. H. Highways for mRNA transport. Cell 134, 722–723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Joseph, J. & Dasso, M. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett. 582, 190–196 (2008).

    CAS  PubMed  Google Scholar 

  65. Cho, K. I. et al. RANBP2 is an allosteric activator of the conventional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep. 10, 480–486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ris, H. Three-dimensional imaging of cell ultrastructure with high resolution, low voltage SEM. Int. Phys. Conf. Ser. 98, 657–662 (1989).

    Google Scholar 

  67. Jarnik, M. & Aebi, U. Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107, 291–308 (1991).

    CAS  PubMed  Google Scholar 

  68. Ris, H. & Malecki, M. High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol. 111, 148–157 (1993).

    CAS  PubMed  Google Scholar 

  69. Goldberg, M. W. & Allen, T. D. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119, 1429–1440 (1992). References 68 and 69 were among the first to provide clear structural evidence for the presence of a basket structure anchored to the nucleoplasmic face of the NPC and the existence of interconnecting fibrils spanning the distance between neighbouring nuclear pores, stretching both perpendicularly and in parallel to the nuclear envelope.

    CAS  PubMed  Google Scholar 

  70. Stoffler, D., Goldie, K. N., Feja, B. & Aebi, U. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J. Mol. Biol. 287, 741–752 (1999).

    CAS  PubMed  Google Scholar 

  71. Beck, M., Lucicc´, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    CAS  PubMed  Google Scholar 

  72. Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol. 145, 272–288 (2004).

    CAS  PubMed  Google Scholar 

  73. Daneholt, B. A look at messenger RNP moving through the nuclear pore. Cell 88, 585–588 (1997).

    CAS  PubMed  Google Scholar 

  74. Kiseleva, E., Goldberg, M. W., Allen, T. D. & Akey, C. W. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci. 111, 223–236 (1998).

    CAS  PubMed  Google Scholar 

  75. Soop, T. et al. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell 16, 5610–5620 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kylberg, K. et al. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp. Cell Res. 316, 1028–1038 (2009). The nucleocytoplasmic transport of RNPs was examined by EM, revealing the presence of a basket-dependent 'exclusion-zone' lining the entire extent of the nuclear face of the nuclear envelope, which prevents unwanted macromolecules from encroaching on the nuclear transport channel.

    PubMed  Google Scholar 

  77. Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673 (2010). RNA interference experiments were combined with EM analyses to show that the basket component TPR is involved in forming NPC-associated heterochromatin exclusion zones along the nuclear surface of the nuclear envelope, thus preventing macromolecular structures from interfering with nuclear transport.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Byrd, D. A. et al. Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J. Cell Biol. 127, 1515–1526 (1994).

    CAS  PubMed  Google Scholar 

  79. Kuznetsov, N. V. et al. The evolutionarily conserved single-copy gene for murine Tpr encodes one prevalent isoform in somatic cells and lacks paralogs in higher eukaryotes. Chromosoma 111, 236–255 (2002).

    CAS  PubMed  Google Scholar 

  80. Zimowska, G., Aris, J. P. & Paddy, M. R. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci. 110, 927–944 (1997).

    CAS  PubMed  Google Scholar 

  81. Qi, H. et al. Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol. Biol. Cell 15, 4854–4865 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Strambio-de-Castillia, C., Blobel, G. & Rout, M. P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144, 839–855 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Frosst, P., Guan, T., Subauste, C., Hahn, K. & Gerace, L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol. 156, 617–630 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Krull, S., Thyberg, J., Björkroth, B., Rackwitz, H. R. & Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cordes, V. C., Reidenbach, S., Rackwitz, H. R. & Franke, W. W. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol. 136, 515–529 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hase, M. E., Kuznetsov, N. V. & Cordes, V. C. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol. Biol. Cell 12, 2433–2452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).

    CAS  PubMed  Google Scholar 

  88. Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167, 605–611 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Casolari, J. M., Brown, C. R., Drubin, D. A., Rando, O. J. & Silver, P. A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev. 19, 1188–1198 (2005). Changes in nuclear organization that follow stimulation of S. cerevisiae cells by mating pheromone were studied to show that the yeast TPR homologue, Mlp1, has a role in determining nuclear organization in response to a developmental cue.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Niepel, M., Strambio-de-Castillia, C., Fasolo, J., Chait, B. T. & Rout, M. P. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J. Cell Biol. 170, 225–235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D. & Stutz, F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823 (2005). Chromatin immunoprecipitation, FISH and pulse-chase experiments were used to show that yeast TPR-like proteins help recruit nascent transcripts to the NPC and have a role in coupling mRNA biogenesis with export through the NPC.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lewis, A., Felberbaum, R. & Hochstrasser, M. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J. Cell Biol. 178, 813–827 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palancade, B. et al. Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol. Biol. Cell 18, 2912–2923 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu, X. M. et al. NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, S. H., Sterling, H., Burlingame, A. & McCormick, F. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev. 22, 2926–2931 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. De Souza, C. P., Hashmi, S. B., Nayak, T., Oakley, B. & Osmani, S. A. Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol. Biol. Cell 20, 2146–2159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lince-Faria, M. et al. Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J. Cell Biol. 184, 647–657 (2009). Megator, the D. melanogaster homologue of human TPR, is shown here to specifically interact with SAC proteins, thus mediating normal mitotic duration and checkpoint response.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Skruzný, M. et al. An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes. PLoS Biol. 7, e8 (2009).

    PubMed  Google Scholar 

  99. Tan-Wong, S. M., Wijayatilake, H. D. & Proudfoot, N. J. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 23, 2610–2624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nature Cell Biol. 12, 111–118 (2010). Identification of specific gene-recuitment sequences, which function as DNA zip codes to recruit inducible S. cerevisiae genes from the nucleoplasm to the NPC and are required for full transcriptional activation of a subset of genes involved in adaptation to varying environmental conditions.

    CAS  PubMed  Google Scholar 

  101. Vaquerizas, J. M. et al. Nuclear pore proteins Nup153 and Megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010). Using chromatin immunoprecipitation combined with microarray hybridization, it was shown that the NPC acts as a global gene regulator in D. melanogaster by interacting with Nup-associated regions of the genome and thereby promoting chromosomal organization and transcriptional control.

    PubMed  PubMed Central  Google Scholar 

  102. Vinciguerra, P. & Stutz, F. mRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol. 16, 285–292 (2004).

    CAS  PubMed  Google Scholar 

  103. Skaggs, H. S. et al. HSF1-TPR interaction facilitates export of stress-induced HSP70 mRNA. J. Biol. Chem. 282, 33902–33907 (2007).

    CAS  PubMed  Google Scholar 

  104. Fasken, M. B. & Corbett, A. H. Mechanisms of nuclear mRNA quality control. RNA Biol. 6, 237–241 (2009).

    CAS  PubMed  Google Scholar 

  105. Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. Nature Rev. Genet. 8, 507–517 (2007).

    CAS  PubMed  Google Scholar 

  106. Chekanova, J. A., Abruzzi, K. C., Rosbash, M. & Belostotsky, D. A. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA 14, 66–77 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmid, M. & Jensen, T. H. Quality control of mRNP in the nucleus. Chromosoma 117, 419–429 (2008).

    CAS  PubMed  Google Scholar 

  108. Schmid, M. & Jensen, T. H. The exosome: a multipurpose RNA-decay machine. Trends Biochem. Sci. 33, 501–510 (2008).

    CAS  PubMed  Google Scholar 

  109. Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J. 23, 4, 847–856 (2004).

    Google Scholar 

  110. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998).

    CAS  PubMed  Google Scholar 

  112. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  113. Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol. 14, 1049–1055 (2007).

    CAS  Google Scholar 

  114. Dilworth, D. J. et al. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J. Cell Biol. 171, 955–965 (2005). Results obtained from proteomics, genomics and functional assays of boundary activity and epigenetic variegation suggest that the NPC plays an active part in chromatin organization by facilitating the transition of chromatin between activity states.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol. 26, 7, 858–870 (2006).

    Google Scholar 

  116. Schmid, M. et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21, 379–391 (2006).

    CAS  PubMed  Google Scholar 

  117. Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006).

    CAS  PubMed  Google Scholar 

  118. Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002). Genetic studies, immunolocalization, live imaging and chromatin immunoprecipitation experiments conducted on chromatin boundary activities identified in S. cerevisiae provided the initial evidence that tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.

    CAS  PubMed  Google Scholar 

  120. Brickner, J. H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004).

    PubMed  PubMed Central  Google Scholar 

  121. Kundu, S., Horn, P. J. & Peterson, C. L. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 21, 997–1004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kundu, S. & Peterson, C. L. Dominant role for signal transduction in transcriptional memory of yeast GAL genes. Mol. Cell. Biol. 30, 2330–2340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006).

    CAS  PubMed  Google Scholar 

  124. Cabal, G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006).

    CAS  PubMed  Google Scholar 

  125. Kurshakova, M. M. et al. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J. 26, 4, 956–965 (2007).

    Google Scholar 

  126. Luthra, R. et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem. 282, 3042–3049 (2007).

    CAS  PubMed  Google Scholar 

  127. Köhler, A., Schneider, M., Cabal, G. G., Nehrbass, U. & Hurt, E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nature Cell Biol. 10, 707–715 (2008).

    PubMed  Google Scholar 

  128. Rouge-maille, M. et al. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell 135, 308–321 (2008).

    CAS  Google Scholar 

  129. Jani, D. et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727–737 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Klockner, C. et al. Mutational uncoupling of the role of Sus1 in nuclear pore complex targeting of an mRNA export complex and histone H2B deubiquitination. J. Biol. Chem. 284, 12049–12056 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. Ellisdon, A. M., Jani, D., Kohler, A., Hurt, E. & Stewart, M. Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. J. Biol. Chem. 285, 3850–3856 (2010).

    CAS  PubMed  Google Scholar 

  132. Hutchison, N. & Weintraub, H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 43, 471–482 (1985).

    CAS  PubMed  Google Scholar 

  133. Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Donze, D. & Kamakaka, R. T. Braking the silence: how heterochromatic gene repression is stopped in its tracks. Bioessays 24, 344–349 (2002).

    CAS  PubMed  Google Scholar 

  135. Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 (2010).

    CAS  PubMed  Google Scholar 

  137. Therizols, P. et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172, 189–199 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ii, T., Mullen, J. R., Slagle, C. E. & Brill, S. J. Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair 6, 1679–1691 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Oza, P. & Peterson, C. L. Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle 9, 43–49 (2010).

    CAS  PubMed  Google Scholar 

  142. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol. 11, 980–987 (2009). Single-cell analysis was used to show that double-stranded DNA breaks get recruited to the vicinity of the NPC where they can undergo specialized repair in an environment designed to favour chromatin stability.

    CAS  PubMed  Google Scholar 

  143. Hanawalt, P. C. Controlling the efficiency of excision repair. Mutat. Res. 485, 3–13 (2001).

    CAS  PubMed  Google Scholar 

  144. Gaillard, H. et al. Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-Not in transcription-coupled repair. PLoS Genet. 5, e1000364 (2009).

    PubMed  PubMed Central  Google Scholar 

  145. Zhang, L., Jones, K. & Gong, F. The molecular basis of chromatin dynamics during nucleotide excision repair. Biochem. Cell Biol. 87, 265–272 (2009).

    CAS  PubMed  Google Scholar 

  146. Faza, M. B. et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol. 184, 833–846 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fernandez-Martinez, J. & Rout, M. P. Nuclear pore complex biogenesis. Curr. Opin. Cell Biol., 21, 603–612 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Guttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nature Rev. Mol. Cell Biol. 10, 178–191 (2009).

    Google Scholar 

  149. Iouk, T., Kerscher, O., Scott, R. J., Basrai, M. A. & Wozniak, R. W. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159, 807–819 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gillett, E. S., Espelin, C. W. & Sorger, P. K. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164, 535–546 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Scott, R. J., Lusk, C. P., Dilworth, D. J., Aitchison, J. D. & Wozniak, R. W. Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 4362–4374 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Scott, R. J., Cairo, L. V., Van de Vosse, D. W. & Wozniak, R. W. The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. J. Cell Biol. 184, 21–29 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Katsani, K. R., Karess, R. E., Dostatni, N. & Doye, V. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell 19, 3652–3666 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Nakano, H., Funasaka, T., Hashizume, C. & Wong, R. W. Nucleoporin Tpr associates with dynein complex preventing chromosome lagging formation during mitosis. J. Biol. Chem. 285, 10841–10849 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rao, C. V., Yamada, H. Y., Yao, Y. & Dai, W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 30, 1469–1474 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005).

    CAS  PubMed  Google Scholar 

  157. Tran, E. J., Bolger, T. A. & Wente, S. R. SnapShot: nuclear transport. Cell 131, 420 (2007).

    PubMed  Google Scholar 

  158. Cullen, B. R. Viral RNAs: lessons from the enemy. Cell 136, 592–597 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Jaspersen, S. L., Giddings, T. H. & Winey, M. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J. Cell Biol. 159, 945–956 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872 (2007).

    CAS  PubMed  Google Scholar 

  163. Gartenberg, M. R. Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery. Genes Dev. 23, 1027–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mekhail, K., Seebacher, J., Gygi, S. P. & Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456, 667–670 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Mans, B. J., Anantharaman, V., Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612–1637 (2004).

    CAS  PubMed  Google Scholar 

  167. Grund, S. E. et al. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J. Cell Biol. 182, 897–910 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Gonzalez-Barrera, S., Garcia-Rubio, M. & Aguilera, A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 162, 603–614 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jimeno, S., Rondon, A. G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526–3535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Gaillard, H., Wellinger, R. E. & Aguilera, A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res. 35, 3893–3906 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. García-Rubio, M. et al. Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Mol. Genet. Genomics 279, 123–132 (2008).

    PubMed  Google Scholar 

  172. Schneider, M., Noegel, A. A. & Karakesisoglou, I. KASH-domain proteins and the cytoskeletal landscapes of the nuclear envelope. Biochem. Soc. Trans. 36, 1368–1372 (2008).

    CAS  PubMed  Google Scholar 

  173. Kelly, S. M. & Corbett, A. H. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 10, 1199–1208 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Luna, R., Gaillard, H., Gonzalez-Aguilera, C. & Aguilera, A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117, 319–331 (2008).

    CAS  PubMed  Google Scholar 

  175. Hacker, S. & Krebber, H. Differential export requirements for shuttling serine/arginine-type mRNA-binding proteins. J. Biol. Chem. 279, 5049–5052 (2004).

    PubMed  Google Scholar 

  176. Iglesias, N. & Stutz, F. Regulation of mRNP dynamics along the export pathway. FEBS Lett. 582, 1987–1996 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Luban (University of Geneva, Switzerland) for unwavering support to the first author throughout the course of this work. We wish to thank O. Petrini and M. Tonolla (Istituto Cantonale di Microbiologia, Bellinzona, Switzerland) for active hospitality and encouragement. We are grateful to J. Luban, K. Mullin and M. Eisenstein for critical reviewing of the manuscript. We apologize to those colleagues whose primary reference we have not been able to cite owing to space limitations. M.P.R. and C. S.-D.-C. gratefully acknowledge funding they received from the European Commission 7th Framework Programme for Scientific Research (Project number: HEALTH-2007-2.3.2, GA number: HEALTH-F3-2008-201,032 to C. S.-D.-C.) from the National Institutes of Health (R01 GM062427 and R01 GM071329 to M. P. R.) and the American Cancer Society (RSG0404251 to M. P. R. and C. S.-D.-C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caterina Strambio-De-Castillia or Michael P. Rout.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Michael P. Rout and Caterina Strambio-De-Castillia's homepage

Glossary

Nuclear periphery

The region of the nucleus comprised of the nuclear envelope and its associated structures, including the NPC and the nuclear components found in the neighbourhood.

β-Propeller

A compact structural protein domain of similarly sized β-sheets, which are stacked into a cylinder to resemble the blades of a propeller.

α-Solenoid

A structural protein domain composed of numerous pairs of antiparallel α-helices that are stacked to form a solenoid.

LEM domain

(LAP2, emerin and MAN1 domain). A domain that is present in a family of evolutionarily conserved integral membrane proteins of the INM, which participate in chromatin organization, gene expression regulation and nuclear envelope biogenesis.

SUN domain

(Sad1 and UNC84 domain). A conserved C-terminal amino acid sequence found in integral membrane proteins of the INM. These proteins act with members of the KASH domain-containing protein family to form a molecular 'velcro', which is thought to mediate several processes requiring nuclear repositioning, such as fertilization, establishment of polarity, division and differentiation.

Brownian motion

The seemingly random movement of particles suspended in a liquid or gas, which is driven by the kinetic energy of the particles in the system.

Heterochromatin

A highly condensed form of chromatin that is either genetically inactive or transcriptionally repressed. It is predominantly located near the nuclear envelope and includes centromeres, telomeres and silenced genes.

SUMO homeostasis

The overall level of proteins modified by the covalent attachment of SUMO. It is balanced through the regulated activities of sumoylating ligases and desumoylating proteases.

TRAMP complex

(Trf4 or Trf5, Air1 or Air2 and Mtr4 polyadenylation complex). A protein complex that functions in RNA processing, degradation and surveillance. It polyadenylates various aberrant nuclear RNAs and thus labels them for processing or degradation by the exosome complex.

Exosome complex

A complex of several exonucleases arranged in a ring structure that, assisted by RNA helicases, degrade RNAs in the nucleus and cytoplasm.

SAGA histone acetyltransferase complex

(Spt, Ada, Gcn5 and acetyltransferase histone acetyltransferase complex). A large and highly conserved multiprotein complex required for the normal transcription of many genes.

TREX2 complex

(Transcription–export complex 2). TREX2 comprises Thp1, Sac3, Cdc31 and the Sus1 subunit of the SAGA complex involved in chromatin remodelling and transcriptional activation. TREX2 interacts with the NPC and is thought to have an important role in coupling SAGA-dependent gene expression to mRNA export.

THO complex

A multiprotein complex conserved among yeast and metazoans that is involved in mRNP biogenesis and export. In S. cerevisiae it consists of Hpr1, Mft1, Tho2 and Thp2. The human counterpart consists of the THO complex proteins THOC1–THOC7.

TREX complex

(Transcription–export complex). A complex that consists of components of the THO complex together with Yra1 (homologous to human THOC4) and Sub2 (homologous to human BAT1). The TREX complex interacts with the NPC through the non-Kap NTFs Mex67 and Mtr2, helping to anchor active genes to the nuclear periphery.

Gene gating hypothesis

The hypothesis in which “the nuclear pore complexes are envisioned to serve as gene-gating organelles capable on interacting specifically with expanded (transcribable) portions of the genome”49.

Spindle pole body (SPB)

The only microtubule organizing centre found in S. cerevisiae. SPBs are embedded in the nuclear envelope throughout the yeast life cycle and their functions include chromosome segregation during mitosis and meiosis, and intracellular trafficking.

Spindle assembly checkpoint (SAC)

The SAC monitors the correct attachment of kinetochores to spindle microtubules before anaphase. Unattached kinetochores activate this checkpoint and cause cell-cycle arrest through the inhibition of the anaphase-promoting complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strambio-De-Castillia, C., Niepel, M. & Rout, M. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11, 490–501 (2010). https://doi.org/10.1038/nrm2928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing