Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis

Key Points

  • Myosins are mechanoenzymes that convert the chemical energy derived from ATP hydrolysis into mechanical work.

  • The kinetic cycle of myosin-driven movement consists of four basic steps. First, the myosin catalytic head binds ATP, which releases the head from actin. Second, ATP hydrolysis results in a conformational change of the catalytic head into a pre-stroke state. Third, associated with phosphate release, the head rebinds strongly to actin and undergoes a transition from the pre-stroke state to a post-stroke state. Finally, ADP is released from the catalytic head, allowing ATP to rebind to complete the cycle.

  • The relative movement at the actin–myosin interface is thought to come from the swing of the light chain-binding region during the kinetic cycle. The light chain-binding region therefore acts as a lever arm to amplify small movements in the catalytic head.

  • Myosin VI has challenged this swinging lever arm hypothesis as it moves much larger distances than the initial interpretation of its structure would allow. A combination of single molecule, biophysical and biochemical studies have now examined the unique structural features of myosin VI that allow it to function in accordance with the lever arm theory of myosin motion.

  • The tail domain of myosin VI, which contains a globular three-helix bundle and an unusual stable and relatively rigid single ER/K motif-containing α-helix, explains the ability of myosin VI to take large steps along actin filaments.

  • Myosin VI carries out diverse functions in various cellular processes. An exciting new area in myosin VI research, and for molecular motors in general, is understanding how multiple myosin VI molecules coordinate to function in different cellular processes.

Abstract

The swinging crossbridge hypothesis states that energy from ATP hydrolysis is transduced to mechanical movement of the myosin head while bound to actin. The light chain-binding region of myosin is thought to act as a lever arm that amplifies movements near the catalytic site. This model has been challenged by findings that myosin VI takes larger steps along actin filaments than early interpretations of its structure seem to allow. We now know that myosin VI does indeed operate by an unusual 180° lever arm swing and achieves its large step size using special structural features in its tail domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The swinging lever arm hypothesis.
Figure 2: Schematic of myosin VI structure and some of its cellular functions.
Figure 3: Schematic of the myosin VI lever arm and tail domains.
Figure 4: Reversing the direction of myosin VI.
Figure 5: Schematic of lever arms in different myosins examined as single-headed species.
Figure 6: The ER/K motif-containing α-helix in the myosin VI lever arm.
Figure 7: Myosin VI as a monomer and a dimer.

Similar content being viewed by others

References

  1. Huxley, H. E. The mechanism of muscular contraction. Science 164, 1356–1365 (1969). Proposes the swinging crossbridge hypothesis, which was later called the swinging lever arm hypothesis.

    CAS  PubMed  Google Scholar 

  2. Coureux, P. D., Sweeney, H. L. & Houdusse, A. Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. 23, 4527–4537 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Himmel, D. M. et al. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc. Natl Acad. Sci. USA 99, 12645–12650 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Menetrey, J. et al. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–785 (2005). Presents the crystal structure of myosin VI in its post-stroke state, which reveals a redirection of the lever arm by the unique insert, first proposed here to be the source of the reverse directionality of this motor.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Menetrey, J., Llinas, P., Mukherjea, M., Sweeney, H. L. & Houdusse, A. The structural basis for the large powerstroke of myosin VI. Cell 131, 300–308 (2007). Presents the crystal structure of myosin VI in its pre-stroke state, and reveals an unexpected change in conformation of the converter that allows a 180° rotation of the myosin VI lever arm.

    CAS  PubMed  Google Scholar 

  6. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    CAS  PubMed  Google Scholar 

  7. Foth, B. J., Goedecke, M. C. & Soldati, D. New insights into myosin evolution and classification. Proc. Natl Acad. Sci. USA 103, 3681–3686 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bagshaw, C. Muscle Contraction (Chapman & Hall, London, 1993).

    Google Scholar 

  9. Burgess, D. R. Cytokinesis: new roles for myosin. Curr. Biol. 15, R310–R311 (2005).

    CAS  PubMed  Google Scholar 

  10. Redowicz, M. J. Myosins and pathology: genetics and biology. Acta Biochim. Pol. 49, 789–804 (2002).

    CAS  PubMed  Google Scholar 

  11. Hasson, T. & Mooseker, M. S. Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J. Cell Biol. 127, 425–440 (1994).

    CAS  PubMed  Google Scholar 

  12. Kellerman, K. A. & Miller, K. G. An unconventional myosin heavy chain gene from Drosophila melanogaster. J. Cell Biol. 119, 823–834 (1992).

    CAS  PubMed  Google Scholar 

  13. Mermall, V., McNally, J. G. & Miller, K. G. Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature 369, 560–562 (1994).

    CAS  PubMed  Google Scholar 

  14. Avraham, K. B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genet. 11, 369–375 (1995).

    CAS  PubMed  Google Scholar 

  15. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002).

    CAS  PubMed  Google Scholar 

  16. Yoshida, H. et al. Lessons from border cell migration in the Drosophila ovary: a role for myosin VI in dissemination of human ovarian cancer. Proc. Natl Acad. Sci. USA 101, 8144–8149 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dunn, T. A. et al. A novel role of myosin VI in human prostate cancer. Am. J. Pathol. 169, 1843–1854 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aschenbrenner, L., Naccache, S. N. & Hasson, T. Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol. Biol. Cell 15, 2253–2263 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hasson, T. Myosin VI: two distinct roles in endocytosis. J. Cell Sci. 116, 3453–3461 (2003).

    CAS  PubMed  Google Scholar 

  20. Ameen, N. & Apodaca, G. Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic 8, 998–1006 (2007).

    CAS  PubMed  Google Scholar 

  21. Chibalina, M. V., Seaman, M. N., Miller, C. C., Kendrick-Jones, J. & Buss, F. Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. J. Cell Sci. 120, 4278–4288 (2007).

    CAS  PubMed  Google Scholar 

  22. Inoue, T. et al. BREK/LMTK2 is a myosin VI-binding protein involved in endosomal membrane trafficking. Genes Cells 13, 483–495 (2008).

    CAS  PubMed  Google Scholar 

  23. Valdembri, D. et al. Neuropilin-1/GIPC1 signalling regulates α5β1 integrin traffic and function in endothelial cells. PLoS Biol. 7, e25 (2009).

    PubMed  Google Scholar 

  24. Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 169, 285–295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Warner, C. L. et al. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell's waltzer mice. EMBO J. 22, 569–579 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue, A., Sato, O., Homma, K. & Ikebe, M. DOC-2/DAB2 is the binding partner of myosin VI. Biochem. Biophys. Res. Commun. 292, 300–307 (2002).

    CAS  PubMed  Google Scholar 

  27. Morris, S. M. et al. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3, 331–341 (2002).

    CAS  PubMed  Google Scholar 

  28. Naccache, S. N., Hasson, T. & Horowitz, A. Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc. Natl Acad. Sci. USA 103, 12735–12740 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, H., Nash, J. E., Zamorano, P. & Garner, C. C. Interaction of SAP97 with minus-end-directed actin motor myosin, V. I. Implications for AMPA receptor trafficking. J. Biol. Chem. 277, 30928–30934 (2002).

    CAS  PubMed  Google Scholar 

  30. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    CAS  PubMed  Google Scholar 

  31. Bahloul, A. et al. The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc. Natl Acad. Sci. USA 101, 4787–4792 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Spink, B. J., Sivaramakrishnan, S., Lipfert, J., Doniach, S. & Spudich, J. A. Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nature Struct. Mol. Biol. 15, 591–597 (2008). Using various biophysical, biochemical and single molecule techniques to characterize structural elements in the tail domain of myosin VI, this study suggests a possible model that enables this motor to take large 36 nm steps based on a 10 nm single α-helix domain.

    CAS  Google Scholar 

  33. De La Cruz, E. M., Ostap, E. M. & Sweeney, H. L. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373–32381 (2001).

    CAS  PubMed  Google Scholar 

  34. Mooseker, M. S. & Coleman, T. R. The 110-kD protein-calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J. Cell Biol. 108, 2395–2400 (1989).

    CAS  PubMed  Google Scholar 

  35. Huxley, H. E. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7, 281–308 (1963).

    CAS  PubMed  Google Scholar 

  36. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    CAS  PubMed  Google Scholar 

  37. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. Motor function and regulation of myosin X. J. Biol. Chem. 276, 34348–34354 (2001).

    CAS  PubMed  Google Scholar 

  38. Tominaga, M. et al. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J. 22, 1263–1272 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Inoue, A., Saito, J., Ikebe, R. & Ikebe, M. Myosin IXb is a single-headed minus-end-directed processive motor. Nature Cell Biol. 4, 302–306 (2002).

    CAS  PubMed  Google Scholar 

  40. O'Connell, C. B. & Mooseker, M. S. Native myosin-IXb is a plus- not a minus-end-directed motor. Nature Cell Biol. 5, 171–172 (2003).

    CAS  PubMed  Google Scholar 

  41. Mooseker, M. S. & Tilney, L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67, 725–743 (1975).

    CAS  PubMed  Google Scholar 

  42. Aschenbrenner, L., Lee, T. & Hasson, T. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol. Biol. Cell 14, 2728–2743 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Eichler, T. W., Kogel, T., Bukoreshtliev, N. V. & Gerdes, H. H. The role of myosin Va in secretory granule trafficking and exocytosis. Biochem. Soc. Trans. 34, 671–674 (2006).

    CAS  PubMed  Google Scholar 

  44. Nishikawa, S. et al. Class VI myosin moves processively along actin filaments backward with large steps. Biochem. Biophys. Res. Commun. 290, 311–317 (2002).

    CAS  PubMed  Google Scholar 

  45. Rock, R. S. et al. Myosin VI is a processive motor with a large step size. Proc. Natl Acad. Sci. USA 98, 13655–13659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cooke, R. The mechanism of muscle contraction. CRC Crit. Rev. Biochem. 21, 53–118 (1986).

    CAS  PubMed  Google Scholar 

  47. Cooke, R., Crowder, M. S., Wendt, C. H., Barnett, V. A. & Thomas, D. D. Muscle cross-bridges: do they rotate? Adv. Exp. Med. Biol. 170, 413–427 (1984).

    CAS  PubMed  Google Scholar 

  48. Yanagida, T. Loose coupling between chemical and mechanical reactions in actomyosin energy transduction. Adv. Biophys. 26, 75–95 (1990).

    CAS  PubMed  Google Scholar 

  49. Yanagida, T., Iwaki, M. & Ishii, Y. Single molecule measurements and molecular motors. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363, 2123–2134 (2008).

    CAS  Google Scholar 

  50. Iwaki, M., Iwane, A. H., Shimokawa, T., Cooke, R. & Yanagida, T. Brownian search-and-catch mechanism for myosin-VI steps. Nature Chem. Biol. 5, 403–405 (2009). Proposes a model of myosin VI stepping based on a Brownian search-and-catch mechanism.

    CAS  Google Scholar 

  51. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    CAS  PubMed  Google Scholar 

  52. Kron, S. J. & Spudich, J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl Acad. Sci. USA 83, 6272–6276 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Toyoshima, Y. Y. et al. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328, 536–539 (1987).

    CAS  PubMed  Google Scholar 

  54. Toyoshima, Y. Y., Kron, S. J. & Spudich, J. A. The myosin step size: measurement of the unit displacement per ATP hydrolysed in an in vitro assay. Proc. Natl Acad. Sci. USA 87, 7130–7134 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Uyeda, T. Q., Kron, S. J. & Spudich, J. A. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol. 214, 699–710 (1990).

    CAS  PubMed  Google Scholar 

  56. Uyeda, T. Q., Warrick, H. M., Kron, S. J. & Spudich, J. A. Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352, 307–311 (1991).

    CAS  PubMed  Google Scholar 

  57. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).

    CAS  PubMed  Google Scholar 

  58. Yanagida, T., Arata, T. & Oosawa, F. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316, 366–369 (1985).

    CAS  PubMed  Google Scholar 

  59. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    CAS  PubMed  Google Scholar 

  60. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    CAS  PubMed  Google Scholar 

  61. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    CAS  PubMed  Google Scholar 

  62. Yasunaga, T., Suzuki, Y., Ohkura, R., Sutoh, K. & Wakabayashi, T. ATP-induced transconformation of myosin revealed by determining three-dimensional positions of fluorophores from fluorescence energy transfer measurements. J. Struct. Biol. 132, 6–18 (2000).

    CAS  PubMed  Google Scholar 

  63. Shih, W. M., Gryczynski, Z., Lakowicz, J. R. & Spudich, J. A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694 (2000).

    CAS  PubMed  Google Scholar 

  64. Purcell, T. J., Morris, C., Spudich, J. A. & Sweeney, H. L. Role of the lever arm in the processive stepping of myosin, V. Proc. Natl Acad. Sci. USA 99, 14159–14164 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor, myosin, V. Nature Cell Biol. 4, 59–65 (2002).

    CAS  PubMed  Google Scholar 

  66. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin, V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sellers, J. R. & Veigel, C. Walking with myosin V. Curr. Opin. Cell Biol. 18, 68–73 (2006).

    CAS  PubMed  Google Scholar 

  68. Trybus, K. M. Myosin V from head to tail. Cell. Mol. Life Sci. 65, 1378–1389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bryant, Z., Altman, D. & Spudich, J. A. The power stroke of myosin VI and the basis of reverse directionality. Proc. Natl Acad. Sci. USA 104, 772–777 (2007). Uses in vitro motility and single molecule optical trapping assays to reveal functional structural transitions in myosin VI, suggesting that myosin VI operates by a lever arm mechanism, that this lever arm swings a full 180° and that reverse directionality of myosin VI is determined by the unique insert.

    CAS  PubMed  Google Scholar 

  70. Park, H. et al. The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc. Natl Acad. Sci. USA 104, 778–783 (2007). Uses an in vitro motility total internal reflection assay using myosin VI–myosin V chimaeras to strongly suggest that reverse directionality of myosin VI is determined by the unique insert.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, Y. et al. Myosin VI walks “wiggly” on actin with large and variable tilting. Mol. Cell 28, 954–964 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Reifenberger, J. G. et al. Myosin VI undergoes a 180° power stroke implying an uncoupling of the front lever arm. Proc. Natl Acad. Sci. USA 106, 18255–18260 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Iwaki, M. et al. Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys. J. 90, 3643–3652 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Okten, Z., Churchman, L. S., Rock, R. S. & Spudich, J. A. Myosin VI walks hand-over-hand along actin. Nature Struct. Mol. Biol. 11, 884–887 (2004).

    Google Scholar 

  75. Yildiz, A. et al. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem. 279, 37223–37226 (2004).

    CAS  PubMed  Google Scholar 

  76. Rock, R. S. et al. A flexible domain is essential for the large step size and processivity of myosin VI. Mol. Cell 17, 603–609 (2005).

    CAS  PubMed  Google Scholar 

  77. Dunn, A. R. & Spudich, J. A. Dynamics of the unbound head during myosin V processive translocation. Nature Struct. Mol. Biol. 14, 246–248 (2007).

    CAS  Google Scholar 

  78. Sivaramakrishnan, S., Spink, B. J., Sim, A. Y., Doniach, S. & Spudich, J. A. Dynamic charge interactions create surprising rigidity in the ER/K α-helical protein motif. Proc. Natl Acad. Sci. USA 105, 13356–13361 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations. Proc. Natl Acad. Sci. USA 92, 8259–8263 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mukherjea, M. et al. Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol. Cell 35, 305–315 (2009). Uses a combination of single molecule and biophysical techniques to suggest a model that enables myosin VI to take large 36 nm steps, based on structural transitions in a three α-helix bundle in the myosin VI tail.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Knight, P. J. et al. The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708 (2005). Provides strong evidence that a segment of the myosin X tail is not a coiled coil, as predicted, but a single α-helix.

    CAS  PubMed  Google Scholar 

  82. Park, H. et al. Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol. Cell 21, 331–336 (2006).

    CAS  PubMed  Google Scholar 

  83. Altman, D., Sweeney, H. L. & Spudich, J. A. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737–749 (2004).

    CAS  PubMed  Google Scholar 

  84. Suveges, D., Gaspari, Z., Toth, G. & Nyitray, L. Charged single α-helix: a versatile protein structural motif. Proteins 74, 905–916 (2009).

    CAS  PubMed  Google Scholar 

  85. Dill, K., Ozkan, S., Shell, M. & Weikl, T. The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, C. L. et al. A long helix from the central region of smooth muscle caldesmon. J. Biol. Chem. 266, 13958–13963 (1991).

    CAS  PubMed  Google Scholar 

  87. Peckham, M. & Knight, P. J. When a predicted coiled coil is really a single α-helix, in myosins and other proteins. Soft Matter 5, 2493–2503 (2009).

    CAS  Google Scholar 

  88. Sivaramakrishnan, S. et al. Combining single molecule optical trapping and small angle X-ray scattering measurements to compute the persistence length of a protein ER/K α-helix. Biophys. J. 97, 2993–2999 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lister, I. et al. A monomeric myosin VI with a large working stroke. EMBO J. 23, 1729–1738 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ingber, D. The architecture of life. Sci. Am. 278, 48–57 (1998).

    CAS  PubMed  Google Scholar 

  91. Ingber, D. E. Tensegrity, I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).

    CAS  PubMed  Google Scholar 

  92. Haswell, E. S. Gravity perception: how plants stand up for themselves. Curr. Biol. 13, R761–R763 (2003).

    CAS  PubMed  Google Scholar 

  93. Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

    CAS  PubMed  Google Scholar 

  94. De La Cruz, E. M. & Ostap, E. M. Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16, 61–67 (2004).

    CAS  PubMed  Google Scholar 

  95. Oguchi, Y. et al. Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function. Proc. Natl Acad. Sci. USA 105, 7714–7719 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sweeney, H. L. et al. How myosin VI coordinates its heads during processive movement. EMBO J. 26, 2682–2692 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Robblee, J. P., Cao, W., Henn, A., Hannemann, D. E. & De La Cruz, E. M. Thermodynamics of nucleotide binding to actomyosin V and VI: a positive heat capacity change accompanies strong ADP binding. Biochemistry 44, 10238–10249 (2005).

    CAS  PubMed  Google Scholar 

  98. Liao, J. C., Elting, M. W., Delp, S. L., Spudich, J. A. & Bryant, Z. Engineered myosin VI motors reveal minimal structural determinants of directionality and processivity. J. Mol. Biol. 392, 862–867 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Manstein, D. J. Molecular engineering of myosin. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359, 1907–1912 (2004).

    CAS  Google Scholar 

  100. Sivaramakrishnan, S. & Spudich, J. A. Coupled myosin VI motors facilitate unidirectional movement on an F-actin network. J. Cell Biol. 187, 53–60 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Buss, F. & Kendrick-Jones, J. How are the cellular functions of myosin VI regulated within the cell? Biochem. Biophys. Res. Commun. 369, 165–175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Spudich, G. et al. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4, 5)P2. Nature Cell Biol. 9, 176–183 (2007). Examines the structural motifs in the myosin VI cargo-binding domain, which mediate the attachment of myosin VI to membrane cargo.

    CAS  PubMed  Google Scholar 

  103. Altman, D., Goswami, D., Hasson, T., Spudich, J. A. & Mayor, S. Precise positioning of myosin VI on endocytic vesicles in vivo. PLoS Biol. 5, e210 (2007).

    PubMed  PubMed Central  Google Scholar 

  104. Yu, C. et al. Myosin VI undergoes cargo-mediated dimerization. Cell 138, 537–548 (2009).

    CAS  PubMed  Google Scholar 

  105. Phichith, D. et al. Cargo binding induces dimerization of myosin VI. Proc. Natl Acad. Sci. USA 106, 17320–17324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.A.S is supported by grant GM33289 from the National Institutes of Health. S.S. is supported by an American Cancer Society postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Spudich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1BR2

2BK1

2MYS

2V26

FURTHER INFORMATION

James A. Spudich's homepage

Glossary

Stereocilium

A tapered, finger-like projection from hair cells of the inner ear that responds to mechanical displacement with alterations in membrane potential, and thereby mediates sensory transduction.

Coiled coil

A protein structural domain that mediates subunit oligomerization. The most common coiled coil contains two α-helices that twist around each other to form a stable, rod-like structure.

Leucine zipper

A leucine-rich coiled-coil structural motif that is a common dimerization domain found in some proteins involved in regulating gene expression.

Brownian motion

The random, thermally driven motion of small objects in a fluid or gas.

Biased thermal diffusion

The random, thermally driven motion of a small object in a fluid, with a bias introduced by a localized attraction force.

Stroke size

The distance travelled by the end of the lever arm of myosin following a single ATP hydrolysis. For a non-processive myosin, step size and stroke size are used interchangeably. For processive dimeric myosins, step size refers to the distance moved by the centre of mass of the molecule for a single ATP hydrolysis. Thus, for a processive dimer, the step size is the stroke size plus the additional distance the leading head travels by thermal diffusion before binding to actin.

Optical trap

An instrument that uses a focused laser beam to provide an attractive or repulsive force to physically hold and move microscopic dielectric objects.

Fluorescence resonance energy transfer

A process of energy transfer between two fluorophores. It can be used to determine the distance between two attachment positions in a macromolecule or between two molecules.

Small-angle X-ray scattering

(SAXS). A system for nanostructure analysis in which nanosized particles scatter towards small angles. The SAXS pattern provides information on the overall size and shape of these particles.

Circular dichroism

The differential absorption of left- and right-handed circularly polarized light. It is used to determine the secondary structure of proteins.

Persistence length

The length scale over which a structure is rigid.

Tensegrity

Short for tensional integrity. It refers to structures with an integrity that is based on a synergy between balanced tension and compression components.

Molecular dynamic simulations

One of the principal tools in the theoretical study of biological molecules, which calculates the time-dependent behaviour of a molecular system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spudich, J., Sivaramakrishnan, S. Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol 11, 128–137 (2010). https://doi.org/10.1038/nrm2833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing