Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proximal events in Wnt signal transduction

Key Points

  • Whereas the cytoplasmic and nuclear steps of the Wnt signalling pathway are fairly well understood, gaps remain in our understanding of how Wnt receptors transduce information to the nucleus of the cell.

  • Although the Frizzled receptors for Wnt proteins are seven transmembrane domain proteins that are generally thought to function by activating heterotrimeric G proteins, whether they engage G proteins has been debated, despite a growing number of biochemical, functional and genetic studies.

  • Lateral signalling from Frizzled receptors to low density lipoprotein receptor-related protein 5 (LRP5) or LRP6, involves the recruitment of Dishevelled proteins and the Axin–glycogen synthase kinase 3 (GSK3) complex, and the phosphorylation of LRP5 or LRP6 by GSK3 and casein kinase 1γ (CK1γ). The recruitment of axin to phosphorylated LRP5 or LRP6 disassembles the degradation complex and leads to β-catenin stabilization.

  • Recently, non-Frizzled receptors for Wnt have been identified. The receptor Tyr kinases ROR2 and RYK can physically interact with Wnt proteins, impinge on known Frizzled-mediated pathways or regulate cellular processes of their own.

  • The primary cilium has recently been found to regulate many cell signalling processes. With respect to Wnt pathways, cilia positively regulate β-catenin-independent signalling and negatively constrain β-catenin-dependent signalling.

Abstract

The Wnt family of secreted ligands act through many receptors to stimulate distinct intracellular signalling pathways in embryonic development, in adults and in disease processes. Binding of Wnt to the Frizzled family of receptors and to low density lipoprotein receptor-related protein 5 (LRP5) or LRP6 co-receptors stimulates the intracellular Wnt–β-catenin signalling pathway, which regulates β-catenin stability and context-dependent transcription. This signalling pathway controls many processes, such as cell fate determination, cell proliferation and self-renewal of stem and progenitor cells. Intriguingly, the transmembrane receptor Tyr kinases Ror2 and Ryk, as well as Frizzled receptors that act independently of LRP5 or LRP6, function as receptors for Wnt and activate β-catenin-independent pathways. This leads to changes in cell movement and polarity and to the antagonism of the β-catenin pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt–β-catenin signalling in metazoans.
Figure 2: β-Catenin-dependent Wnt signalling.
Figure 3: β-Catenin-independent Wnt pathways.
Figure 4: Lateral signalling between Frizzled and LRPs.
Figure 5: Non-Frizzled receptors for Wnt ligands.
Figure 6: Cilia regulate Wnt signalling.

Similar content being viewed by others

References

  1. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657 (1987).

    CAS  PubMed  Google Scholar 

  3. McMahon, A. P. & Moon, R. T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084 (1989). The initial demonstration that Wnt signalling is functionally important in vertebrate development.

    CAS  PubMed  Google Scholar 

  4. Stoick-Cooper, C. L., Moon, R. T. & Weidinger, G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev. 21, 1292–1315 (2007).

    CAS  PubMed  Google Scholar 

  5. Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489 (2007).

    CAS  PubMed  Google Scholar 

  6. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996). The first study to directly implicate Frizzled proteins as receptors for Wnt ligands.

    CAS  PubMed  Google Scholar 

  7. Yang-Snyder, J., Miller, J. R., Brown, J. D., Lai, C. J. & Moon, R. T. A Frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr. Biol. 6, 1302–1306 (1996). Implicates vertebrate Frizzled proteins as receptors for Wnt ligands.

    CAS  PubMed  Google Scholar 

  8. Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    CAS  PubMed  Google Scholar 

  9. Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002).

    CAS  PubMed  Google Scholar 

  10. Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biol. 6, 52–58 (2004).

    CAS  PubMed  Google Scholar 

  11. Hikasa, H., Shibata, M., Hiratani, I. & Taira, M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development 129, 5227–5239 (2002).

    CAS  PubMed  Google Scholar 

  12. Yoshikawa, S., McKinnon, R. D., Kokel, M. & Thomas, J. B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003). Identifies the Tyr kinase receptor Derailed ( D. melanogaster RYK homologue) as a non-Frizzled receptor for Wnt, which is important in commisural axon guidance.

    CAS  PubMed  Google Scholar 

  13. Lu, W., Yamamoto, V., Ortega, B. & Baltimore, D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108 (2004).

    CAS  PubMed  Google Scholar 

  14. Inoue, T. et al. C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell 118, 795–806 (2004).

    CAS  PubMed  Google Scholar 

  15. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nature Rev. Genet. 5, 691–701 (2004).

    CAS  PubMed  Google Scholar 

  16. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    CAS  PubMed  Google Scholar 

  17. Kimelman, D. & Xu, W. β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25, 7482–7491 (2006).

    CAS  PubMed  Google Scholar 

  18. Dabdoub, A. et al. Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130, 2375–2384 (2003).

    CAS  PubMed  Google Scholar 

  19. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000). Provides genetic evidence that links a specific Wnt to the regulation of gastrulation movements.

    CAS  PubMed  Google Scholar 

  20. Winklbauer, R., Medina, A., Swain, R. K. & Steinbeisser, H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856–860 (2001).

    CAS  PubMed  Google Scholar 

  21. Westfall, T. A. et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol. 162, 889–898 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Torres, M. A. et al. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol. 133, 1123–1137 (1996).

    CAS  PubMed  Google Scholar 

  23. Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. 162, 899–908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang, H. et al. Noncanonical Wnt signaling promotes apoptosis in thymocyte development. J. Exp. Med. 204, 3077–3084 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997).

    CAS  PubMed  Google Scholar 

  26. Liu, T., Liu, X., Wang, H., Moon, R. T. & Malbon, C. C. Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Gαq and Gαo function. J. Biol. Chem. 274, 33539–33544 (1999).

    CAS  PubMed  Google Scholar 

  27. Liu, X., Rubin, J. S. & Kimmel, A. R. Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr. Biol. 15, 1989–1997 (2005).

    CAS  PubMed  Google Scholar 

  28. Katanaev, V. L., Ponzielli, R., Semeriva, M. & Tomlinson, A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120, 111–122 (2005).

    CAS  PubMed  Google Scholar 

  29. Slusarski, D. C., Yang-Snyder, J., Busa, W. B. & Moon, R. T. Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182, 114–120 (1997).

    CAS  PubMed  Google Scholar 

  30. Dejmek, J., Safholm, A., Kamp Nielsen, C., Andersson, T. & Leandersson, K. Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes–Cdc42–casein kinase 1α signaling in human mammary epithelial cells. Mol. Cell. Biol. 26, 6024–6036 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kremenevskaja, N. et al. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24, 2144–2154 (2005).

    CAS  PubMed  Google Scholar 

  32. Schleiffarth, J. R. et al. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr. Res. 61, 386–391 (2007).

    PubMed  Google Scholar 

  33. Ma, L. & Wang, H. Y. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J. Biol. Chem. 281, 30990–31001 (2006).

    CAS  PubMed  Google Scholar 

  34. Saneyoshi, T., Kume, S., Amasaki, Y. & Mikoshiba, K. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417, 295–299 (2002).

    CAS  PubMed  Google Scholar 

  35. Pereira, C., Schaer, D. J., Bachli, E. B., Kurrer, M. O. & Schoedon, G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler. Thromb. Vasc. Biol. 28, 504–510 (2008).

    CAS  PubMed  Google Scholar 

  36. Dissanayake, S. K. et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282, 17259–17271 (2007).

    CAS  PubMed  Google Scholar 

  37. Weeraratna, A. T. et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279–288 (2002).

    CAS  PubMed  Google Scholar 

  38. Kilian, B. et al. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev. 120, 467–476 (2003).

    CAS  PubMed  Google Scholar 

  39. Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000).

    CAS  PubMed  Google Scholar 

  40. Penzo-Mendez, A., Umbhauer, M., Djiane, A., Boucaut, J. C. & Riou, J. F. Activation of Gβγ signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev. Biol. 257, 302–314 (2003).

    CAS  PubMed  Google Scholar 

  41. Angers, S. et al. The KLHL12–cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nature Cell Biol. 8, 348–357 (2006).

    CAS  PubMed  Google Scholar 

  42. Dohlman, H. G. & Thorner, J. W. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70, 703–754 (2001).

    CAS  PubMed  Google Scholar 

  43. Chen, A. E., Ginty, D. D. & Fan, C. M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322 (2005).

    CAS  PubMed  Google Scholar 

  44. Tu, X. et al. Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev. Cell 12, 113–127 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. DeCamp, D. L., Thompson, T. M., de Sauvage, F. J. & Lerner, M. R. Smoothened activates Gαi-mediated signaling in frog melanophores. J. Biol. Chem. 275, 26322–26327 (2000).

    CAS  PubMed  Google Scholar 

  46. Philipp, M. & Caron, M. G. Hedgehog signaling: is Smo a G protein-coupled receptor? Curr. Biol. 19, R125–R127 (2009).

    CAS  PubMed  Google Scholar 

  47. Ogden, S. K. et al. G protein Gαi functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456, 967–970 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wehrli, M. et al. Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    CAS  PubMed  Google Scholar 

  49. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000). References 48 and 49 describe the identification of Arrow in D. melanogaster and LRP5 in vertebrates as co-receptors for Wnt signal transduction.

    CAS  PubMed  Google Scholar 

  50. Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7, 801–809 (2001).

    CAS  PubMed  Google Scholar 

  51. Willert, K., Shibamoto, S. & Nusse, R. Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes Dev. 13, 1768–1773 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, E10 (2003).

    PubMed  PubMed Central  Google Scholar 

  53. Tamai, K. et al. A mechanism for Wnt coreceptor activation. Mol. Cell 13, 149–156 (2004).

    CAS  PubMed  Google Scholar 

  54. Wolf, J., Palmby, T. R., Gavard, J., Williams, B. O. & Gutkind, J. S. Multiple PPPS/TP motifs act in a combinatorial fashion to transduce Wnt signaling through LRP6. FEBS Lett. 582, 255–261 (2008).

    CAS  PubMed  Google Scholar 

  55. Davidson, G. et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 (2005).

    CAS  PubMed  Google Scholar 

  56. Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005). References 55 and 56 identify GSK3 and CK1γ as kinases that are important for the phosphorylation of LRP5 or LRP6 in response to Wnt. This phosphorylation creates a signal for Axin to be recruited to the C terminus of LRP5 or LRP6.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Siegfried, E., Wilder, E. L. & Perrimon, N. Components of wingless signalling in Drosophila. Nature 367, 76–80 (1994).

    CAS  PubMed  Google Scholar 

  58. Smalley, M. J. et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 18, 2823–2835 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kishida, S. et al. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol. 19, 4414–4422 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeng, X. et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135, 367–375 (2008).

    CAS  PubMed  Google Scholar 

  61. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007). Introduces the concept of signalosomes to Wnt signalling.

    CAS  PubMed  Google Scholar 

  62. Schwarz-Romond, T., Merrifield, C., Nichols, B. J. & Bienz, M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci. 118, 5269–5277 (2005).

    CAS  PubMed  Google Scholar 

  63. Wong, H. C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell 12, 1251–1260 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, Y. K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8, R405–R406 (1998).

    CAS  PubMed  Google Scholar 

  65. Patthy, L. The WIF module. Trends Biochem. Sci. 25, 12–13 (2000).

    CAS  PubMed  Google Scholar 

  66. Forrester, W. C., Kim, C. & Garriga, G. The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration. Genetics 168, 1951–1962 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Oishi, I. et al. Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells 4, 41–56 (1999).

    CAS  PubMed  Google Scholar 

  68. Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–654 (2003). Identifies the receptor Tyr kinase ROR2 as a non-Frizzled receptor that is important for signalling through a β-catenin-independent pathway.

    CAS  PubMed  Google Scholar 

  69. Schambony, A. & Wedlich, D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 12, 779–792 (2007).

    CAS  PubMed  Google Scholar 

  70. Unterseher, F. et al. Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J. 23, 3259–3269 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ishitani, T. et al. The TAK1–NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ishitani, T. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399, 798–802 (1999).

    CAS  PubMed  Google Scholar 

  73. Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLoS Biol. 4, e115 (2006). Shows that ROR2 is a receptor for WNT5A, which is required to antagonize the β-catenin pathway.

    PubMed  PubMed Central  Google Scholar 

  74. Itasaki, N. et al. Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130, 4295–4305 (2003).

    CAS  PubMed  Google Scholar 

  75. Cselenyi, C. S. & Lee, E. Context-dependent activation or inhibition of Wnt–β-catenin signaling by Kremen. Sci. Signal. 1, pe10 (2008).

    PubMed  Google Scholar 

  76. Verkaar, F., van Rosmalen, J. W., Smits, J. F., Blankesteijn, W. M. & Zaman, G. J. Stably overexpressed human Frizzled-2 signals through the β-catenin pathway and does not activate Ca2+-mobilization in human embryonic kidney 293 cells. Cell Signal. 21, 22–33 (2009).

    CAS  PubMed  Google Scholar 

  77. Hovens, C. M. et al. RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc. Natl Acad. Sci. USA 89, 11818–11822 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bonkowsky, J. L., Yoshikawa, S., O'Keefe, D. D., Scully, A. L. & Thomas, J. B. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature 402, 540–544 (1999).

    CAS  PubMed  Google Scholar 

  79. Wouda, R. R., Bansraj, M. R., de Jong, A. W., Noordermeer, J. N. & Fradkin, L. G. Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development 135, 2277–2287 (2008).

    CAS  PubMed  Google Scholar 

  80. Lyu, J., Yamamoto, V. & Lu, W. Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev. Cell 15, 773–780 (2008).

    CAS  PubMed  Google Scholar 

  81. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  82. Zechner, D. et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    CAS  PubMed  Google Scholar 

  83. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    CAS  PubMed  Google Scholar 

  84. Eliasson, R., Mossberg, B., Camner, P. & Afzelius, B. A. The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N. Engl. J. Med. 297, 1–6 (1977).

    CAS  PubMed  Google Scholar 

  85. Hou, X. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest. 109, 533–540 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    CAS  PubMed  Google Scholar 

  87. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet. 33, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  88. Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425, 628–633 (2003).

    CAS  PubMed  Google Scholar 

  89. Eggenschwiler, J. T. & Anderson, K. V. Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol. 23, 345–373 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genet. 37, 537–543 (2005).

    CAS  PubMed  Google Scholar 

  91. Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nature Genet. 34, 413–420 (2003).

    CAS  PubMed  Google Scholar 

  92. Ross, A. J. et al. Disruption of Bardet–Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genet. 37, 1135–1140 (2005).

    CAS  PubMed  Google Scholar 

  93. Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nature Genet. 39, 1350–1360 (2007).

    CAS  PubMed  Google Scholar 

  94. Corbit, K. C. et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nature Cell Biol. 10, 70–76 (2008).

    CAS  PubMed  Google Scholar 

  95. Kishimoto, N., Cao, Y., Park, A. & Sun, Z. Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways. Dev. Cell 14, 954–961 (2008).

    CAS  PubMed  Google Scholar 

  96. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet. 40, 871–879 (2008).

    CAS  PubMed  Google Scholar 

  97. DasGupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308, 826–833 (2005).

    CAS  PubMed  Google Scholar 

  98. Major, M. B. et al. New regulators of Wnt/β-catenin signaling revealed by integrative molecular screening. Sci. Signal. 1, ra12 (2008).

    PubMed  Google Scholar 

  99. Tang, W. et al. A genome-wide RNAi screen for Wnt/β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc. Natl Acad. Sci. USA 105, 9697–9702 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 316, 1043–1046 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.A. is the recipient of a Canada Research Chair in Functional Architecture of Signal Transduction and is supported by the Canadian Institute of Health Research and the Cancer Research Society. R.T.M. is an investigator of the Howard Hughes Medical Institute. The authors thank V. Voronina for reading the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Stephane Angers does not declare competing financial interests. Randall T. Moon is a consultant for Fate Therapeutics.

Related links

Related links

DATABASES

OMIM

BBS

nephronophthisis

PKD

polydactyly

situs inversus

Entrez Protein

CAM-1

FURTHER INFORMATION

Stephane Angers' homepage

Randall T. Moon's homepage

Glossary

Glycoproteins

A protein that is post-translationally modified with oligosaccharide moieties.

Ubiquitylation

A post-translational modification of proteins that involves the covalent linkage of the small protein ubiquitin to target Lys residues. Ubiquitylation commonly leads to polypeptides being recognized by the 26S proteasome for degradation, but can also modify the function of target proteins.

Planar cell polarity

The coordinated organization of individual cells, with respect to the plane of a single sheet of cells.

Convergent extension movement

A specialized morphogenetic cell movement that consists of the mediolateral convergence of mesodermal cells and of their intercalation perpendicular to the axis of elongation. The net result of these cell movements is the elongation of the embryonic body axis.

Heterotrimeric G protein

A guanine nucleotide-binding protein, comprising an α-subunit and a βγ-dimer, that is activated following the activation of a G protein-coupled receptor.

Primitive endoderm

Early differentiated cells that form an epithelial structure, which covers the pluripotent cells of the inner cell mass. The primitive endoderm develops into the visceral endoderm that covers the epiblast and the parietal endoderm that lines the blastocoel cavity.

Pertussis toxin

A toxin secreted by the bacterium Bordetella pertussis. Pertussis toxin functions by catalysing the ADP-ribosylation of Gαi, Gαo and Gαt, which prevents their association with cognate G protein-coupled receptors and thus inhibits signalling.

Ommatidium

The eye of insects is composed of units called ommatidia. The ommatidium contains photoreceptor and pigment cells.

Hypomorphic clone

A group of cells in which the same gene is mutated, and in which the mutation only partially affects the biological activity controlled by the gene product.

Guanine nucleotide-exchange factor

A protein that interacts with, and activates, G proteins by promoting the exchange of GDP for GTP.

Epistasis experiment

An approach used to determine whether two genes function in the same biological pathway. Epistasis experiments also give information on the order in which the genes function.

Gastrulation

An embryonic process characterized by extensive cell movements that establishes the three germ layers: endoderm, ectoderm and mesoderm.

Signalosome

A group of proteins that assemble together to carry out a specific signalling task.

Animal cap

An explant dissected from the animal pole of a blastula stage embryo that contains pluripotent cells.

Homeodomain protein

Member of a family of transcription factors that direct morphogenesis during development.

Commissural neuron

A neuron that extends axons across the ventral midline to transfer sensory information from one side of the body to the other in bilaterally symmetrical organisms.

Basal body

An organelle anchored at the plasma membrane and found at the base of primary cilia. It serves as a nucleation site for the growth of microtubules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angers, S., Moon, R. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10, 468–477 (2009). https://doi.org/10.1038/nrm2717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing