Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways

This article has been updated

Key Points

  • At the start of each ubiquitin-like protein (UBL) cascade is an E1 enzyme, which activates the UBL and then directs the UBL to downstream pathways. UBL proteins and E1 (or activating) enzymes have their origins in prokaryotic biosynthetic pathways.

  • In humans, eight E1 enzymes are known to initiate UBL conjugation. We refer to E1s for ubiquitin (UBA1 and UBA6 (also known as UBE1L2)), SUMO (SAE1–UBA2), NEDD8 (NAE1–UBA3) and ISG15 (UBA7) as canonical, owing to their related domain structures and enzymatic mechanisms, and to the more divergent E1s for URM1 (UBA4), UFM1 (UBA5) and ATG12 and ATG8 isoforms (ATG7) as non-canonical. (ATG is autophagy-related protein; ISG15 is interferon-stimulated gene 15; NAE1 is NEDD8-activating enzyme 1; SAE1 is SUMO-activating enzyme 1; UBA is ubiquitin-activating enzyme; UFM1 is ubiquitin-fold modifier 1; URM1 is ubiquitin-related modifier 1).

  • Canonical E1 structures all have an adenylation domain that resembles prokaryotic ancestors, and two domains that are specific to canonical E1s: a catalytic Cys domain that contains the Cys that is involved in the E1UBL thioester linkage and a carboxyl-terminal ubiquitin-fold domain that resembles ubiquitin and that binds E2.

  • In addition to their chemical roles in initiating UBL conjugation cascades, E1s also establish specificity, by matching a particular UBL with only cognate E2s. Rules for how this specificity is achieved are only beginning to emerge, but it is clear that specificity is achieved at multiple levels.

  • A particularly intriguing non-canonical E1 is UBA4 (MOCS3 in humans). Recent data indicate that UBA4 initiates a sulphur transfer pathway, in a manner related to bacterial E1-like enzymes.

  • E1s are unique in the UBL conjugating pathway in that they are the only components that use ATP, and this property is being exploited to develop selective inhibitors. The potential for the use of such inhibitors in therapy is high, given the links seen between components of UBL cascades and human disease.

Abstract

Attachment of ubiquitin or ubiquitin-like proteins (known as UBLs) to their targets through multienzyme cascades is a central mechanism to modulate protein functions. This process is initiated by a family of mechanistically and structurally related E1 (or activating) enzymes. These activate UBLs through carboxy-terminal adenylation and thiol transfer, and coordinate the use of UBLs in specific downstream pathways by charging cognate E2 (or conjugating) enzymes, which then interact with the downstream ubiquitylation machinery to coordinate the modification of the target. A broad understanding of how E1 enzymes activate UBLs and how they selectively coordinate UBLs with downstream function has come from enzymatic, structural and genetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse functions of ubiquitin-like proteins.
Figure 2: Activation of a prokaryotic ubiquitin-like protein, MoaD, by MoeB.
Figure 3: E1 domain structures.
Figure 4: Canonical E1 domain rotation in ubiquitin-like protein transfer to E2s.
Figure 5: Model for a thioester switch modulating E1–E2 interactions.
Figure 6: The UBA4 pathway.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 09 April 2009

    In the main text, 'inorganic phosphate' in the following two sentences should read 'inorganic pyrophosphate': "The basic side chains of MoaD or ThiS would stabilize the developing negative charge from the ensuing pentacovalent phosphate intermediate, allowing the generation of MoaDadenylate or ThiSadenylate and inorganic phosphate." And: "Progression of the cascade is driven by the release of the small molecule products inorganic phosphate and AMP in the first and second steps, respectively56,57,58,62,63."

References

  1. Ciechanover, A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin–proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew. Chem. Int. Edn Engl. 44, 5944–5967 (2005).

    Article  CAS  Google Scholar 

  2. Goldberg, A. L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983). Describes the chromatographic separation of E1, E2 and E3 activities and demonstrates reconstitution of the first ubiquitin ligase reaction.

    Article  CAS  PubMed  Google Scholar 

  4. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  PubMed  Google Scholar 

  5. Pickart, C. M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  7. Hochstrasser, M. Ubiquitin signalling: what's in a chain? Nature Cell Biol. 6, 571–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Hurley, J. H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harper, J. W. & Schulman, B. A. Structural complexity in ubiquitin recognition. Cell 124, 1133–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar 

  11. Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew. Chem. Int. Edn Engl. 44, 5932–5943 (2005).

    Article  CAS  Google Scholar 

  12. Hochstrasser, M. Biochemistry. All in the ubiquitin family. Science 289, 563–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biol. 2, E153–E157 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Varshavsky, A. Regulated protein degradation. Trends Biochem. Sci. 30, 283–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hershko, A., Ciechanover, A. & Varshavsky, A. The ubiquitin system. Nature Med. 6, 1073–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Yamoah, K. et al. Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail. Proc. Natl Acad. Sci. USA 105, 12230–12235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duda, D. M. et al. Structural insights into NEDD8 activation of cullin–RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  Google Scholar 

  24. Wang, C., Xi, J., Begley, T. P. & Nicholson, L. K. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nature Struct. Biol. 8, 47–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Lake, M. W., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature 414, 325–329 (2001). Describes the structure of the MoeB–MoaD complex and reveals the mechanism of MoaD adenylation. This is the only structure to date of an E1-like enzyme with an adenylate.

    Google Scholar 

  26. Taylor, S. V. et al. Thiamin biosynthesis in Escherichia coli. Identification of this thiocarboxylate as the immediate sulfur donor in the thiazole formation. J. Biol. Chem. 273, 16555–16560 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Leimkuhler, S., Wuebbens, M. M. & Rajagopalan, K. V. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276, 34695–34701 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Duda, D. M., Walden, H., Sfondouris, J. & Schulman, B. A. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349, 774–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lehmann, C., Begley, T. P. & Ealick, S. E. Structure of the Escherichia coli ThiS–ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 45, 11–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Sloper-Mould, K. E., Jemc, J. C., Pickart, C. M. & Hicke, L. Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Roush, R. F., Nolan, E. M., Lohr, F. & Walsh, C. T. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N–P bond formation in microcin C7. J. Am. Chem. Soc. 130, 3603–3609 (2008).

    Article  CAS  Google Scholar 

  32. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Handley, P. M., Mueckler, M., Siegel, N. R., Ciechanover, A. & Schwartz, A. L. Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. Proc. Natl Acad. Sci. USA 88, 258–262 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatfield, P. M., Callis, J. & Vierstra, R. D. Cloning of ubiquitin activating enzyme from wheat and expression of a functional protein in Escherichia coli. J. Biol. Chem. 265, 15813–15817 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208–2214 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gong, L. & Yeh, E. T. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem. 274, 12036–12042 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618–10624 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Gong, L., Li, B., Millas, S. & Yeh, E. T. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan, W. & Krug, R. M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Furukawa, K., Mizushima, N., Noda, T. & Ohsumi, Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275, 7462–7465 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Komatsu, M. et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977–1986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin, J., Li, X., Gygi, S. P. & Harper, J. W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007). Together with references 45 and 46, this paper identifies UBA6 as a second activating enzyme for ubiquitin, and identifies USE1 as a specific E2 conjugating enzyme for UBA6.

    Article  CAS  PubMed  Google Scholar 

  45. Pelzer, C. et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem. 282, 23010–23014 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chiu, Y. H., Sun, Q. & Chen, Z. J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27, 1014–1023 (2007). Identifies UBA6 as a candidate E1 for FAT10.

    Article  CAS  PubMed  Google Scholar 

  47. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, D. T., Walden, H., Duda, D. & Schulman, B. A. Ubiquitin-like protein activation. Oncogene 23, 1958–1971 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Walden, H., Podgorski, M. S. & Schulman, B. A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334 (2003). Describes the first crystal structure of the canonical E1 protein complex responsible for activating NEDD8, and defines the domain structure of canonical E1s.

    Article  CAS  PubMed  Google Scholar 

  50. Lois, L. M. & Lima, C. D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005). Describes the first structure of the heterodimeric SUMO activating enzyme bound to SUMO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008). Describes the first structure of an activating enzyme for ubiquitin in complex with ubiquitin.

    Article  CAS  PubMed  Google Scholar 

  52. Komatsu, M. et al. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1–E2 complex formation. J. Biol. Chem. 276, 9846–9854 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Tanida, I., Tanida-Miyake, E., Ueno, T. & Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem. 276, 1701–1706 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Schmitz, J. et al. The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47, 6479–6489 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Haas, A. L. & Rose, I. A. The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J. Biol. Chem. 257, 10329–10337 (1982).

    Article  CAS  PubMed  Google Scholar 

  57. Haas, A. L., Warms, J. V., Hershko, A. & Rose, I. A. Ubiquitin-activating enzyme. Mechanism and role in protein–ubiquitin conjugation. J. Biol. Chem. 257, 2543–2548 (1982). Demonstrates that UBA1 becomes doubly loaded with ubiquitin, with one molecule in a thioester with the catalytic Cys of UBA1 and the second ubiquitin as an adenylate.

    Article  CAS  PubMed  Google Scholar 

  58. Haas, A. L., Warms, J. V. & Rose, I. A. Ubiquitin adenylate: structure and role in ubiquitin activation. Biochemistry 22, 4388–4394 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Ciechanover, A., Heller, H., Katz-Etzion, R. & Hershko, A. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc. Natl Acad. Sci. USA 78, 761–765 (1981). Suggests a two step mechanism for ubiquitin activation, the first involving adenylation and the second involving thioester formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982). Describes the purification of E1 ubiquitin activating enzyme, UBA1, which used the thioester as a tool for recovery of active enzyme. The ability to purify active UBA1 revolutionized the field.

    Article  CAS  PubMed  Google Scholar 

  61. Pickart, C. M. & Rose, I. A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260, 1573–1581 (1985). Demonstrated the existence of a family of E2 conjugating enzymes that are charged by UBA1, foreshadowing the discovery that distinct E2s are involved in distinct biological pathways.

    Article  CAS  PubMed  Google Scholar 

  62. Haas, A. L. & Bright, P. M. The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J. Biol. Chem. 263, 13258–13267 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Haas, A. L., Bright, P. M. & Jackson, V. E. Functional diversity among putative E2 isozymes in the mechanism of ubiquitin–histone ligation. J. Biol. Chem. 263, 13268–13275 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Pickart, C. M., Kasperek, E. M., Beal, R. & Kim, A. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J. Biol. Chem. 269, 7115–7123 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Tokgoz, Z., Bohnsack, R. N. & Haas, A. L. Pleiotropic effects of ATP..Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme. J. Biol. Chem. 281, 14729–14737 (2006).

    Article  PubMed  CAS  Google Scholar 

  66. Bohnsack, R. N. & Haas, A. L. Conservation in the mechanism of Nedd8 activation by the human AppBp1–Uba3 heterodimer. J. Biol. Chem. 278, 26823–26830 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Walden, H. et al. The structure of the APPBP1–UBA3–NEDD8–ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, D. T. et al. Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445, 394–398 (2007). Reports the first structure of a doubly loaded canonical E1 enzyme, and defines a thioester switch responsible for promoting transfer of the ubiquitin like protein NEDD8 to its E2, UBC12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, C. et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein. Proc. Natl Acad. Sci. USA 101, 7578–7582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, D. T. et al. A unique E1–E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nature Struct. Mol. Biol. 11, 927–935 (2004).

    Article  CAS  Google Scholar 

  71. Huang, D. T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Souphron, J. et al. Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1. Biochemistry 47, 8961–8969 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Wilkinson, K. D. et al. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue. Biochemistry 29, 7373–7380 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Madden, M. M. et al. Substrate properties of ubiquitin carboxyl-terminally derived peptide probes for protein ubiquitination. Biochemistry 47, 3636–3644 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Szczepanowski, R. H., Filipek, R. & Bochtler, M. Crystal structure of a fragment of mouse ubiquitin-activating enzyme. J. Biol. Chem. 280, 22006–22011 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Sullivan, M. L. & Vierstra, R. D. Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. J. Biol. Chem. 266, 23878–23885 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A. & Schulman, B. A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Durfee, L. A., Kelley, M. L. & Huibregtse, J. M. The basis for selective E1–E2 interactions in the ISG15 conjugation system. J. Biol. Chem. 283, 23895–23902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, T. V. et al. The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously. Development 135, 43–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  81. Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rabut, G. & Peter, M. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 969–976 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tatham, M. H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Whitby, F. G., Xia, G., Pickart, C. M. & Hill, C. P. Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J. Biol. Chem. 273, 34983–34991 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, J. et al. The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Mol. Cell 27, 228–237 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Haas, A. L. Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins. Mol. Cell 27, 174–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, D. T., Zhuang, M., Ayrault, O. & Schulman, B. A. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nature Struct. Mol. Biol. 15, 280–287 (2008).

    Article  CAS  Google Scholar 

  88. Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984). Identifies UBA1 as the protein mutated in the ts85 cell line and demonstrates that UBA1 is responsible for the vast majority of ubiquitin conjugation in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  89. Ciechanover, A., Finley, D. & Varshavsky, A. Mammalian cell cycle mutant defective in intracellular protein degradation and ubiquitin–protein conjugation. Prog. Clin. Biol. Res. 180, 17–31 (1985).

    CAS  PubMed  Google Scholar 

  90. Schlabach, M. R. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A. & Schwartz, A. L. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 15, 3806–3812 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell 12, 1293–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Swanson, R. & Hochstrasser, M. A viable ubiquitin-activating enzyme mutant for evaluating ubiquitin system function in Saccharomyces cerevisiae. FEBS Lett. 477, 193–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Ghaboosi, N. & Deshaies, R. J. A conditional yeast E1 mutant blocks the ubiquitin–proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. Mol. Biol. Cell 18, 1953–1963 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kulkarni, M. & Smith, H. E. E1 ubiquitin-activating enzyme UBA-1 plays multiple roles throughout C. elegans development. PLoS Genet. 4, e1000131 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pfleger, C. M., Harvey, K. F., Yan, H. & Hariharan, I. K. Mutation of the gene encoding the ubiquitin activating enzyme Uba1 causes tissue overgrowth in Drosophila. Fly (Austin) 1, 95–105 (2007).

    Article  Google Scholar 

  97. Nollen, E. A. et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl Acad. Sci. USA 101, 6403–6408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ramser, J. et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 82, 188–193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A. & Schwartz, A. L. The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J. Biol. Chem. 271, 15608–15614 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Nouspikel, T. & Hanawalt, P. C. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc. Natl Acad. Sci. USA 103, 16188–16193 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grenfell, S. J., Trausch-Azar, J. S., Handley-Gearhart, P. M., Ciechanover, A. & Schwartz, A. L. Nuclear localization of the ubiquitin-activating enzyme, E1, is cell-cycle-dependent. Biochem. J. 300, 701–708 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dohmen, R. J. et al. An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 270, 18099–18109 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Bossis, G. & Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F. & Chiocca, S. A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Boggio, R., Passafaro, A. & Chiocca, S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J. Biol. Chem. 282, 15376–15382 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Handeli, S. & Weintraub, H. The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M, and G1. Cell 71, 599–611 (1992).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, Y., McPhie, D. L., Hirschberg, J. & Neve, R. L. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S–M checkpoint and causes apoptosis in neurons. J. Biol. Chem. 275, 8929–8935 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26, 4457–4466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goehring, A. S., Rivers, D. M. & Sprague, G. F. Jr. Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot. Cell 2, 930–936 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schlieker, C., Van der Veen, A. G., Damon, J. R., Spooner, E. & Ploegh, H. L. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc. Natl Acad. Sci. USA 105, 18255–18260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leidel, S. et al. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458, 228–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Nakai, Y., Nakai, M. & Hayashi, H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J. Biol. Chem. 283, 27469–27476 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, B., Lu, J. & Bystrom, A. S. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14, 2183–2194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tanida, I. et al. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367–1379 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Mizushima, T. et al. Crystal structure of Ufc1, the Ufm1-conjugating enzyme. Biochem. Biophys. Res. Commun. 362, 1079–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Sekizawa, R. et al. Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme. J. Nat. Prod. 65, 1491–1493 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T. K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Worthylake, D. K., Prakash, S., Prakash, L. & Hill, C. P. Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 Å resolution. J. Biol. Chem. 273, 6271–6276 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature (in the press).

  122. Huang, D.T. et al. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell. 33, 483–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (J.W.H. and B.A.S.) and Millennium Pharmaceuticals, Inc. (J.W.H.) for funding our work on E1 enzymes and C. Regni for assistance with figure 2. B.A.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Brenda A. Schulman is a consultant for Millennium Pharmaceuticals.

J. Wade Harper is also a consultant for and receives grant support from Millennium Pharmaceuticals.

Related links

Related links

DATABASES

Protein Data Bank

1JWA

1R4M

1U9B

1Y8R

1Y8X

2AYZ

2NVU

3CMM

FURTHER INFORMATION

Brenda A. Schulman's homepage

J. Wade Harper's homepage

Glossary

Adenylation

The synthesis of a phosphodiester bond between a hydroxyl group and the phosphate group of AMP. In the case of ubiquitin-like protein (UBL) conjugation cascades, the hydroxyl is from the carboxyl terminus of the UBL.

Thioester bond

Covalent linkage of a sulphur with an acyl group. In the case of ubiquitin-like protein (UBL) cascades, the Cys sulphur of an enzyme is linked to the terminal carbon of a UBL.

26S proteasome

A large multisubunit protease complex that selectively degrades polyubiquitylated proteins. It contains a 20S particle that carries the catalytic activity and two regulatory 19S particles.

UBL fold

A structural motif, also known as βGRASP fold, that has a domain with a structure of two β-sheets, followed by an α-helix and two additional β-sheets.

Rhodanese homology domain

A domain that shares sequence and structural homology to rhodanese, a mitochondrial enzyme that catalyses Cys-mediated sulphur transfer reactions.

PP loop ATPase domain

A structural motif found in a family of conserved ATP-binding proteins that serve as tRNA-modifying enzymes and activate the tRNA through adenylation.

Elongator complex

An enzyme complex that replaces the hydrogen atom on position 5 of uridine at nucleotide 34 of tRNAs by a methoxycarbonylmethyl group.

Thiouridinylation

An enzymatic process in which the 2' oxygen of uridine in the anticodon of a tRNA is replaced by sulphur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, B., Wade Harper, J. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10, 319–331 (2009). https://doi.org/10.1038/nrm2673

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing