Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo

Key Points

  • During development, cells become progressively restricted in their lineage choices. The allocation of cells to a specific lineage is regulated by the activities of key signalling pathways and developmentally regulated transcription factors.

  • The first binary cell lineage decision, between the trophectoderm (TE) and the inner cell mass (ICM), is governed by the exclusive expression of caudal-type homeobox protein 2 (CDX2) and octamere-binding transcription factor 3/4 (OCT3/4; also known as POU5F1) in TE or ICM, respectively. The ICM is further subdivided into the primitive endoderm and epiblast by expression of GATA-binding factor 6 (GATA6) and nanog.

  • Signals from the extraembryonic tissues, namely the TE and primitive endoderm, have instructive roles in setting up the embryonic axes and are the source of growth factors and their antagonists that regulate cell type specification in epiblast derivatives during gastrulation.

  • The primitive streak is the site where the mesoderm and definitive endoderm are formed and it is induced in response to Wnt and transforming growth factor β (TGFβ)–nodal signalling.

  • At the primitive streak, cells are allocated to specific fates according to their spatio-temporal position in the streak. The positional information reflects differences in signalling strength of fibroblast growth factor 8 (FGF8), WNT3 or WNT3A and nodal–SMAD2 and SMAD3 and bone morphogenetic protein 4 (BMP4), which are integrated to direct cell lineage specification and regulate morphogenesis.

  • Segregation of primordial germ cells (PGCs) from the somatic lineages at gastrulation requires BMP4–SMAD1 and SMAD5 signals from the extraembryonic ectoderm. Primordial germ cells undergo extensive epigenetic reprogramming to maintain pluripotency throughout the life cycle.

Abstract

Genetic studies have identified the key signalling pathways and developmentally regulated transcription factors that govern cell lineage allocation and axis patterning in the early mammalian embryo. Recent advances have uncovered details of the molecular circuits that tightly control cell growth and differentiation in the mammalian embryo from the blastocyst stage, through the establishment of initial anterior–posterior polarity, to gastrulation, when the germ cells are set aside and the three primary germ layers are specified. Relevant studies in lower vertebrates indicate the conservation and divergence of regulatory mechanisms for cell lineage allocation and axis patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage segregation in the blastocyst.
Figure 2: The proximo–distal axis of the pre-gastrulation embryo is established through reciprocal tissue interactions.
Figure 3: Formation of different cell types at gastrulation.
Figure 4: Epithelial–mesenchymal transition in the primitive streak.
Figure 5: Dose-dependent BMP–SMAD signals are required for germ cell lineage specification.

Similar content being viewed by others

References

  1. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Sutherland, A. E., Speed, T. P. & Calarco, P. G. Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev. Biol. 137, 13–25 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005). Describes reciprocal interactions between OCT3/4 and CDX2 that might underlie the first embryonic cell lineage decision between ICM and TE.

    Article  CAS  PubMed  Google Scholar 

  4. Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ralston, A. & Rossant, J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313, 614–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2–MAPK pathway. Dev. Cell 10, 615–624 (2006). Shows that epiblast and PE lineages are already separated at the early blastocyst stage in a position-independent manner. It is suggested that nanog-positive cells give rise to the epiblast and that the PE derives from GATA6-positive cells in a GRB2–Ras–MAPK-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  8. Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A. K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  11. Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biol. 8, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Fujikura, J. et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng, A. M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K. & Lonai, P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95, 5082–5087 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. & Goldfarb, M. Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Wilder, P. J. et al. Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. Dev. Biol. 192, 614–629 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Gerbe, F., Cox, B., Rossant, J. & Chazaud, C. Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev. Biol. 313, 594–602 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Norris, D. P. & Robertson, E. J. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 13, 1575–1588 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001). Indicates the central role of nodal signalling in patterning the early mouse embryo through reciprocal tissue interactions.

    Article  CAS  PubMed  Google Scholar 

  20. Perea-Gomez, A., Shawlot, W., Sasaki, H., Behringer, R. R. & Ang, S. HNF3β and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior–posterior polarity in the mouse embryo. Development 126, 4499–4511 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Waldrip, W. R., Bikoff, E. K., Hoodless, P. A., Wrana, J. L. & Robertson, E. J. Smad2 signaling in extraembryonic tissues determines anterior–posterior polarity of the early mouse embryo. Cell 92, 797–808 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Chazaud, C. & Rossant, J. Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development 133, 3379–3387 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Huelsken, J. et al. Requirement for β-catenin in anterior–posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guzman-Ayala, M., Ben-Haim, N., Beck, S. & Constam, D. B. Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. Proc. Natl Acad. Sci. USA 101, 15656–15660 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez, T. A., Srinivas, S., Clements, M. P., Smith, J. C. & Beddington, R. S. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132, 2513–2520 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Donnison, M. et al. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132, 2299–2308 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Georgiades, P. & Rossant, J. Ets2 is necessary in trophoblast for normal embryonic anteroposterior axis development. Development 133, 1059–1068 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mesnard, D., Guzman-Ayala, M. & Constam, D. B. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133, 2497–2505 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Beddington, R. S. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Lu, C. C., Brennan, J. & Robertson, E. J. From fertilization to gastrulation: axis formation in the mouse embryo. Curr. Opin. Genet. Dev. 11, 384–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996). Describes, for the first time, the functional significance of the AVE as an important signalling centre that defines anterior identity in the mouse.

    Article  CAS  PubMed  Google Scholar 

  33. Lowe, L. A., Yamada, S. & Kuehn, M. R. Genetic dissection of nodal function in patterning the mouse embryo. Development 128, 1831–1843 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Ding, J. et al. Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395, 702–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Ang, S. L. et al. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Kimura-Yoshida, C. et al. Crucial roles of Foxa2 in mouse anterior–posterior axis polarization via regulation of anterior visceral endoderm-specific genes. Proc. Natl Acad. Sci. USA 104, 5919–5924 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perea-Gomez, A. et al. Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 128, 753–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Srinivas, S., Rodriguez, T., Clements, M., Smith, J. C. & Beddington, R. S. Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development 131, 1157–1164 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Rakeman, A. S. & Anderson, K. V. Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching. Development 133, 3075–3083 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kimura-Yoshida, C. et al. Canonical Wnt signaling and its antagonist regulate anterior–posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev. Cell 9, 639–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Takaoka, K., Yamamoto, M. & Hamada, H. Origin of body axes in the mouse embryo. Curr. Opin. Genet. Dev. 17, 344–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Lawson, K. A. & Pedersen, R. A. Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found. Symp. 165, 3–21 (1992).

    CAS  PubMed  Google Scholar 

  44. Gardner, R. L. & Cockroft, D. L. Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125, 2397–2402 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, C. C. & Robertson, E. J. Multiple roles for Nodal in the epiblast of the mouse embryo in the establishment of anterior–posterior patterning. Dev. Biol. 273, 149–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Gu, Z. et al. The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev. 12, 844–857 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Warga, R. M. & Kane, D. A. One-eyed pinhead regulates cell motility independent of Squint/Cyclops signaling. Dev. Biol. 261, 391–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Mishina, Y., Suzuki, A., Ueno, N. & Behringer, R. R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9, 3027–3037 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Conlon, F. L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Dunn, N. R., Vincent, S. D., Oxburgh, L., Robertson, E. J. & Bikoff, E. K. Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development 131, 1717–1728 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Kelly, O. G., Pinson, K. I. & Skarnes, W. C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131, 2803–2815 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Zeng, L. et al. The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997). Establishes axin as an important regulator of Wnt signalling. It shows, for the first time, that elevated levels of Wnt signalling induce formation of the primitive streak in mice.

    Article  CAS  PubMed  Google Scholar 

  55. Popperl, H. et al. Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124, 2997–3005 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006). Defines two independent feed-forward loops that ensure the highest nodal signalling level on the posterior pole of the embryo at the site of primitive streak formation.

    Article  CAS  PubMed  Google Scholar 

  57. Norris, D. P., Brennan, J., Bikoff, E. K. & Robertson, E. J. The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129, 3455–3468 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Saijoh, Y. et al. Left–right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol. Cell 5, 35–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Vincent, S. D., Dunn, N. R., Hayashi, S., Norris, D. P. & Robertson, E. J. Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev. 17, 1646–1662 (2003). Shows that cell lineage allocation in the APS is governed by graded levels of nodal–SMAD2 signalling. The conditional deletion of SMAD2 in the epiblast, or lowering nodal expression in the primitive streak by targeted deletion of the primitive streak enhancer element, results in the selective loss of the anterior DE and PCP mesoderm but not other APS derivatives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lawson, K. A. Fate mapping the mouse embryo. Int. J. Dev. Biol. 43, 773–775 (1999).

    CAS  PubMed  Google Scholar 

  62. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Tremblay, K. D., Dunn, N. R. & Robertson, E. J. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128, 3609–3621 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Kwon, G. S., Viotti, M. & Hadjantonakis, A. K. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell 15, 509–520 (2008). Using elegant cell fate analysis and fluorescent markers, this study shows the persistence of VE cells in the layer of DE in the post-gastrulation embryo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Yamanaka, Y., Tamplin, O. J., Beckers, A., Gossler, A. & Rossant, J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev. Cell 13, 884–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Tremblay, K. D., Hoodless, P. A., Bikoff, E. K. & Robertson, E. J. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 127, 3079–3090 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Chu, G. C., Dunn, N. R., Anderson, D. C., Oxburgh, L. & Robertson, E. J. Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo. Development 131, 3501–3512 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Hoodless, P. A. et al. FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev. 15, 1257–1271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamamoto, M. et al. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior–posterior patterning and node formation in the mouse. Genes Dev. 15, 1242–1256 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dufort, D., Schwartz, L., Harpal, K. & Rossant, J. The transcription factor HNF3β is required in visceral endoderm for normal primitive streak morphogenesis. Development 125, 3015–3025 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Arnold, S. J., Hofmann, U. K., Bikoff, E. K. & Robertson, E. J. Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development 135, 501–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Saka, Y. & Smith, J. C. A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus. BMC Dev. Biol. 7, 47 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Schmierer, B. & Hill, C. S. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nature Rev. Mol. Cell Biol. 8, 970–982 (2007).

    Article  CAS  Google Scholar 

  75. Grapin-Botton, A. & Constam, D. Evolution of the mechanisms and molecular control of endoderm formation. Mech. Dev. 124, 253–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Seguin, C. A., Draper, J. S., Nagy, A. & Rossant, J. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell 3, 182–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129, 2367–2379 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Howard, L., Rex, M., Clements, D. & Woodland, H. R. Regulation of the Xenopus Xsox17a 1 promoter by co-operating VegT and Sox17 sites. Dev. Biol. 310, 402–415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–7434 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, Y. et al. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 3859–3864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lickert, H. et al. Formation of multiple hearts in mice following deletion of b-catenin in the embryonic endoderm. Dev. Cell 3, 171–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, J. & Weinberg, R. A. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol. 2, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ciruna, B. & Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1, 37–49 (2001). Establishes that the transcriptional repressor snail functions downstream of FGF signalling to repress E-cadherin expression at the primitive streak. Loss of E-cadherin is a prerequisite for EMT and migration of nascent mesoderm from the primitive streak.

    Article  CAS  PubMed  Google Scholar 

  88. Yamaguchi, T. P., Harpal, K., Henkemeyer, M. & Rossant, J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8, 3032–3044 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Carver, E. A., Jiang, R., Lan, Y., Oram, K. F. & Gridley, T. The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol. Cell. Biol. 21, 8184–8188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zohn, I. E. et al. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 125, 957–969 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Xue, Y. et al. Mesodermal patterning defect in mice lacking the Ste20 NCK interacting kinase (NIK). Development 128, 1559–1572 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Kitajima, S., Takagi, A., Inoue, T. & Saga, Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127, 3215–3226 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Bondue, A. et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3, 69–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Lindsley, R. C. et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial–mesenchymal transition in differentiating ESCs. Cell Stem Cell 3, 55–68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fukui, A., Goto, T., Kitamoto, J., Homma, M. & Asashima, M. SDF-1α regulates mesendodermal cell migration during frog gastrulation. Biochem. Biophys. Res. Commun. 354, 472–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Mizoguchi, T., Verkade, H., Heath, J. K., Kuroiwa, A. & Kikuchi, Y. Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 135, 2521–2529 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Wallingford, J. B., Fraser, S. E. & Harland, R. M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R. E. & Stern, C. D. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Klein, R. S. & Rubin, J. B. Immune and nervous system CXCL12 and CXCR4: parallel roles in patterning and plasticity. Trends Immunol. 25, 306–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Ogata, S. et al. TGF-β signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev. 21, 1817–1831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maretto, S. et al. Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. Dev. Biol. 318, 184–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Di-Gregorio, A. et al. BMP signalling inhibits premature neural differentiation in the mouse embryo. Development 134, 3359–3369 (2007). Shows that BMP signalling in the epiblast is required to maintain epiblast pluripotency and to repress precocious NE differentiation.

    Article  CAS  PubMed  Google Scholar 

  107. Camus, A., Perea-Gomez, A., Moreau, A. & Collignon, J. Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev. Biol. 295, 743–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Lewis, S. L. et al. Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135, 1791–1801 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Mukhopadhyay, M. et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Bachiller, D. et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Silvestri, C. et al. Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell 14, 411–423 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Episkopou, V. et al. Induction of the mammalian node requires Arkadia function in the extraembryonic lineages. Nature 410, 825–830 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Niederlander, C., Walsh, J. J., Episkopou, V. & Jones, C. M. Arkadia enhances nodal-related signalling to induce mesendoderm. Nature 410, 830–834 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Mavrakis, K. J. et al. Arkadia enhances Nodal/TGF-β signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol. 5, e67 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Dupont, S. et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121, 87–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Seydoux, G. & Braun, R. E. Pathway to totipotency: lessons from germ cells. Cell 127, 891–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Hayashi, K., de Sousa Lopes, S. M. & Surani, M. A. Germ cell specification in mice. Science 316, 394–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999). Shows for the first time that BMP signals from extraembryonic tissues are required for the generation of PGCs in a dose-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chang, H. & Matzuk, M. M. Smad5 is required for mouse primordial germ cell development. Mech. Dev. 104, 61–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Arnold, S. J., Maretto, S., Islam, A., Bikoff, E. K. & Robertson, E. J. Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev. Biol. 296, 104–118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. de Sousa Lopes, S. M. et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. 18, 1838–1849 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  123. de Sousa Lopes, S. M., Hayashi, K. & Surani, M. A. Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors. BMC Dev. Biol. 7, 140 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tanaka, S. S., Yamaguchi, Y. L., Tsoi, B., Lickert, H. & Tam, P. P. IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev. Cell 9, 745–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Lange, U. C. et al. Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol. Cell. Biol. 28, 4688–4696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Bortvin, A., Goodheart, M., Liao, M. & Page, D. C. Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev. Biol. 4, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278, 440–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y. & Saitou, M. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol. Reprod. 75, 705–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005). References 131 and 132 show that BLIMP1 (also known as PRDM1) is a marker for lineage restricted PGCs. Both papers show that targeted deletions of BLIMP1 lead to the complete loss of PGCs.

    Article  CAS  PubMed  Google Scholar 

  133. Yamaji, M. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genet. 40, 1016–1022 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Robertson, E. J. et al. Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development 134, 4335–4345 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Magnusdottir, E. et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc. Natl Acad. Sci. USA 104, 14988–14993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biol. 8, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Yamanaka, Y., Ralston, A., Stephenson, R. O. & Rossant, J. Cell and molecular regulation of the mouse blastocyst. Dev. Dyn. 235, 2301–2314 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Massague, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shen, M. M. Nodal signaling: developmental roles and regulation. Development 134, 1023–1034 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Bikoff for valuable comments on the manuscript. Work in the laboratory is supported by a Programme Grant from the Wellcome Trust. E.J.R. is Principal Fellow of the Wellcome Trust. S.J.A. is supported in part by a Feodor Lynen-Fellowship from the Alexander von Humboldt-Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Robertson.

Related links

Related links

FURTHER INFORMATION

Elizabeth J. Robertson's homepage

Glossary

Gastrulation

The embryonic process during which the three germ layers of the embryo are specified.

Blastocyst

The spherical embryo at the time of implantation. The blastocyst consists of the primary tissue types: trophectoderm, epiblast and the primitive endoderm.

Blastomere

The cell type of the early embryo that is generated by cleavage of the zygote.

Inner cell mass

Pluripotent tissue inside the blastocyst that gives rise to the embryo proper and yolk sac tissue.

Trophectoderm

An extraembryonic, outside tissue layer of the early embryo that connects the embryo to the uterus and forms the placenta.

Pluripotency

The ability of a stem cell to give rise to many different cell types.

Primitive endoderm

Extraembryonic tissue that initially covers the epiblast surface and later gives rise to the yolk sac tissue.

Epiblast

The founding tissue of the embryo proper that gives rise to all fetal tissues.

Ectoderm

The founding germ layer of neural tissues, neural crest and skin.

Mesoderm

The middle sheet of mesenchymal cells that forms blood and vasculature, muscle, bone, cartilage and connective tissues. Mesoderm contributes to many cell types of internal organs.

Definitive endoderm

The outside tissue layer that gives rise to the gut tube and associated organs, such as the lungs, liver, pancreas and the intestinal tract.

Primitive streak

The site on the posterior side of the embryo where epiblast cells ingress to form the mesoderm and definitive endoderm.

Epithelial–mesenchymal transition

A process during which cells change their shape from an epithelium to mesenchyme by loss of epithelial cell adhesion properties and epithelial cell polarity.

Morphogen

A signalling molecule that generates dose-dependent morphogenetic responses during development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, S., Robertson, E. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10, 91–103 (2009). https://doi.org/10.1038/nrm2618

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing