Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurosensory mechanotransduction

Key Points

  • Neurosensory mechanotransduction is rapid, which suggests that it requires the direct gating of transducing channels, rather than activation through chemical intermediates.

  • Candidate mechanosensory channels have been identified through assays for stretch-activated channels, genetic screens for mechanosensory defective animals and the investigation of proteins that are homologous to those found by the other two approaches.

  • Three families of channel proteins DEG/ENaC (degenerin (also known as ACCN1)/epithelial Na+ channel (ENaC; also known as SCNN1)) proteins, the transient receptor potential (TRP) proteins and the two-pore-domain K+ channel (K2P) proteins) have been implicated in mechanosensation in animals. A fourth family of channel bacterial proteins, the mechanosensitive channel of large conductance (MscS)-like proteins, is also found in plants.

  • Evidence for the involvement of these channel proteins in mechanosensation is variable. Many cannot be gated in heterologous systems and others, although required, might not be directly involved in transduction.

  • Three models have been proposed for the gating of mechanosensory channels. First, changes in forces in the lipid bilayer affect channel conformation (no other proteins are needed); second, stretching between tethered intracellular and extracellular structures opens the channels (membrane forces do not have a role); and third, movement of a single tether to the channel alters the interaction of the channel with the membrane and the forces inside it, thereby opening the channel.

Abstract

Neurons that sense touch, sound and acceleration respond rapidly to specific mechanical signals. The proteins that transduce these signals and underlie these senses, however, are mostly unknown. Research over the past decade has suggested that members of three families of channel proteins are candidate transduction molecules. Current studies are directed towards characterizing these candidates, determining how they are mechanically gated and discovering new molecules that are involved in mechanical sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A gallery of mechanosensitive cells.
Figure 2: Gentle touch in Caenorhabditis elegans.
Figure 3: Mechanosensory transduction in bacteria.
Figure 4: Dual-tether model.
Figure 5: Single-tether model.

Similar content being viewed by others

References

  1. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  2. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  3. Corey, D. P. & Hudspeth, A. J. Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979). Provides the first demonstration of the rapidity of hair cell mechanosensory transduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000). Reports the cloning and characterization of the nompC gene, which is needed for the rapid bristle mechanosensory currents.

    Article  CAS  PubMed  Google Scholar 

  5. O'Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci. 8, 43–50 (2005). Provides evidence that the MEC-4 channel is part of a mechanosensory transducer for touch sensitivity.

    Article  CAS  PubMed  Google Scholar 

  6. Albert, J. T., Nadrowski, B. & Göpfert, M. C. Mechanical signatures of transducer gating in the Drosophila ear. Curr. Biol. 17, 1000–1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Martinac, B., Buechner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84, 2297–2301 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368, 265–268 (1994). Identifies the gene for the first mechanotransducing channel, the MscL channel of E. coli .

    Article  CAS  PubMed  Google Scholar 

  9. Sulston, J., Dew, M. & Brenner, S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J. Comp. Neurol. 163, 215–226 (1975). References 9–11 describe the genetic screens for mutations that affect gentle touch sensitivity in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  10. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Hart, A. C., Sims, S. & Kaplan, J. M. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Kernan, M., Cowan, D. & Zuker, C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12, 1195–1206 (1994). Describes the first genetic screen for mechanosensory mutants in D. melanogaster .

    Article  CAS  PubMed  Google Scholar 

  14. Eberl, D. F., Duyk, G. M. & Perrimon, N. A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 94, 14837–14842 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Nicolson, T. et al. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20, 271–283 (1998). Describes the first analysis of zebrafish mutants with developmentally or functionally defective hair cells.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman L. M., Dror, A. A. & Avraham, K. B. Mouse models to study inner ear development and hereditary hearing loss. Int. J. Dev. Biol. 51, 609–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, S. D., Hardisty-Hughes, R. E. & Mburu, P. Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nature Rev. Genet. 9, 277–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Petit, C. From deafness genes to hearing mechanisms: harmony and counterpoint. Trends Mol. Med. 12, 57–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Jasti, J., Furukawa, H., Gonzales, E. B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–470 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Goodman, M. B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Chelur, D. S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420, 669–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, A. L., Liao, Z. & Goodman M. B. MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J. Gen. Physiol. 131, 605–616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huber, T. B. et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc. Natl Acad. Sci. USA 103, 17079–17086 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Getz, G. S., Reardon, C. A. Paraoxonase, a cardioprotective enzyme: continuing issues. Curr. Opin. Lipidol. 15, 261–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Adams, C. M. et al. Ripped Pocket and Pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143–152 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Darboux, I., Lingueglia, E., Pauron, D., Barbry, P. & Lazdunski, M. A new member of the amiloride-sensitive sodium channel family in Drosophila melanogaster peripheral nervous system. Biochem. Biophys. Res. Commun. 246, 210–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ainsley, J. A. et al. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr. Biol. 13, 1557–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Ainsley, J. A., Kim, M. J., Wegman, L. J., Pettus, J. M. & Johnson, W. A. Sensory mechanisms controlling the timing of larval developmental and behavioral transitions require the Drosophila DEG/ENaC subunit, Pickpocket1. Dev. Biol. 322, 46–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Drummond, H. A., Abboud, F. M. & Welsh, M. J. Localization of β and γ subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res. 884, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Fricke, B. et al. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res. 299, 327–334 (2000).

    CAS  PubMed  Google Scholar 

  35. Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. García-Añoveros, J., Samad, T. A., Zuvela-Jelaska, L., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678–2686 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Drew, L. J. et al. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J. Physiol. 556, 691–710 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Page, A. J. et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54, 1408–1415 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benson, C. J. et al. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc. Natl Acad. Sci. USA 99, 2338–2343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Canessa, C. M et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Salgado, C. et al. Stomatin and sensory neuron mechanotransduction. J. Neurophysiol. 98, 3802–3808 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharif-Naeini, R. et al. TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch. 456, 529–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Göpfert, M. C., Albert, J. T., Nadrowski, B. & Kamikouchi, A. Specification of auditory sensitivity by Drosophila TRP channels. Nature Neurosci. 9, 999–1000 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301, 96–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Sawin, E. R., Ranganathan, R. & Horvitz, H. R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Li, W., Feng, Z., Sternberg, P. W. & Xu, X. Z. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684–687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Corey, D. P. What is the hair cell transduction channel? J. Physiol. 576, 23–28 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Gong, Z. et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 24, 9059–9066 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kernan, M. J. Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch. 454, 703–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Liedtke, W. TRPV channels' role in osmotransduction and mechanotransduction. Handb. Exp. Pharmacol. 179, 473–487 (2007).

    Article  CAS  Google Scholar 

  59. Tracey, W. D. Jr, Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Zhou, X. L. et al. The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc. Natl Acad. Sci. USA 100, 7105–7110 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction.

  62. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Prober, D. A. et al. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J. Neurosci. 28, 10102–10110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol. 7, 179–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Gottlieb, P. et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch. 455, 1097–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J. & Gill, D. L. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl Acad. Sci. USA 103, 16586–16591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gu, C. X., Juranka, P. F. & Morris, C. E. Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys. J. 80, 2678–2693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dedman, A. et al. The mechano-gated K2P channel TREK-1. Eur. Biophys. J. 28 Mar 2008 (doi: 10.1007/s00249-008-0318-8). An up-to-date summary of the research of the K 2P channels in vertebrates.

    Article  PubMed  CAS  Google Scholar 

  70. Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaplan, J. M. & Horvitz, H. R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 2227–2231 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Emtage, L., Gu, G., Hartwieg, E. & Chalfie, M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 44, 795–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, S. Stomatin Gene Family in Caenorhabditis elegans. Thesis, Columbia Univ. (2004).

    Google Scholar 

  74. Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res. 15, 103–112 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Söllner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428, 955–959 (2004).

    Article  PubMed  CAS  Google Scholar 

  77. Ahmed, Z. M. et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J. Neurosci. 26, 7022–7034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kazmierczak, P. et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Chung, Y. D., Zhu, J., Han, Y. & Kernan, M. J. nompA encodes a PNS-specific, ZP domain protein required to connect mechanosensory dendrites to sensory structures. Neuron 29, 415–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Du, H., Gu, G., William, C. M. & Chalfie, M. Extracellular proteins needed for C. elegans mechanosensation. Neuron 16, 183–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005). Presents a reconsideration of the dual-tether model of mechanosensation.

    Article  CAS  PubMed  Google Scholar 

  82. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999). Describes the identification of the gene that encodes the MscS channel in E. coli .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vasquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K. & Perozo, E. A structural mechanism for MscS gating in lipid bilayers. Science 321, 1210–1214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, W. et al. The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution. Science 321, 1179–1183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Morris, C. E. Mechanosensitive ion channels. J. Membr. Biol. 113, 93–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. Nature 413, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Denk, W., Holt, J. R., Shepherd, G. M. & Corey, D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15, 1311–1321 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Hudspeth, A. J. & Corey, D. P. Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl Acad. Sci. USA 74, 2407–2411 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Assad, J. A., Shepherd, G. M. & Corey, D. P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7, 985–994 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Gu, G., Caldwell, G. A. & Chalfie, M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 6577–6582 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bounoutas, A. & Chalfie, M. Touch sensitivity in Caenorhabditis elegans. Pflugers Arch. 454, 691–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Crawford, A. C., Evans, M. G. & Fettiplace, R. Activation and adaptation of transducer currents in turtle hair cells. J. Physiol. 419, 405–434 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Howard, J. & Hudspeth, A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1, 189–199 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Pivetti, C. D. et al. Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67, 66–85 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Haswell, E. S. & Meyerowitz, E. M. MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16, 1–11 (2006). References 97–99 describe the initial characterization of genes for plant channels that are similar to the MscS channels of bacteria.

    Article  CAS  PubMed  Google Scholar 

  98. Haswell, E. S., Peyronnet, R., Barbier-Brygoo, H., Meyerowitz, E. M. & Frachisse, J. M. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18, 730–734 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Nakayama, Y., Fujiu, K., Sokabe, M. & Yoshimura, K. Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc. Natl Acad. Sci. USA 104, 5883–5888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 23 Dec 2008 (doi: 10.1038/nrm2597).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks J. Árnadóttir for helpful discussions. Research in the author's laboratory has been supported by grant GM30997 from the US Public Health Service.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Martin Chalfie's homepage

Glossary

Spheroplast

A preparation of bacterial membrane that can be recorded electrophysiologically. Spheroplasts are produced by using a bacterial strain that conditionally does not allow cell division, thus allowing the formation of large membrane structures.

Prohibitin domain

(PHB domain). A 150 amino-acid sequence that is found in several proteins in prokayotes and eukaryotes. Human PHB proteins include prohibitin, stomatin and podocin. The PHB domain in C. elegans MEC-2 and mouse podocin allows the binding of cholesterol.

Paraoxonase

A family of proteins in humans, two of which are associated with high-density lipoprotein particles and another is localized to the plasma membrane in a wide range of cells. A similar protein, MEC-6, is needed for touch sensitivity in C. elegans.

Chordotonal organ

The mechanosensory structure that is used in insects for mechanosensation and hearing.

Proprioception

The sense of body position and movement.

Stereocilium

An actin-containing projection in a vertebrate hair cell.

Kinocilum

The single projection in each vertebrate hair cell that contains a microtubule axoneme.

Connexin

A gap junction and hemijunction protein that is found in vertebrates.

Pannexin

A gap junction and hemijunction protein that is found in vertebrates and invertebrates. The invertebrate proteins were originally called innexins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalfie, M. Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10, 44–52 (2009). https://doi.org/10.1038/nrm2595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing