Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exiting the Golgi complex

Key Points

  • The trans-Golgi network (TGN) is an assembly of pleiomorphic tubular membranes that emanates from the trans-Golgi pole. It has multiple crucial roles in intracellular transport as a sorting node for secretory cargo, a biosynthetic centre for sphingolipids and the interface between the exocytic and endocytic pathways.

  • The TGN is an extremely dynamic structure, and its extent (size and number of tubules) largely depends on the amount of cargo and membrane flowing through it. We therefore propose that this organelle is an assembly of cargo-sorting domains under extrusion as tubules for export out of the Golgi complex.

  • The main destinations of TGN-derived carriers are the apical and basolateral plasma membrane, the early and late endosomes, the secretory granules and other specialized compartments in specialized cells. Each of these destinations corresponds to at least one carrier type, although different carriers might ferry specific cargo proteins to the same acceptor organelle.

  • The final destination of each specific cargo type is determined by the sorting signals in the cargo molecule. These signals are decoded by a complex cytosolic machinery, within which coat proteins and adaptors have a major role.

  • The formation of these pleiomorphic tubular TGN carriers can be divided into three main stages: cargo sorting into a forming tubule; extrusion of the tubular carrier along microtubules by molecular motors; and fission of the elongated tubule into a free carrier. Each of these stages involves a multi-component machinery, only parts of which have been identified to date.

  • Future research in the TGN area will require the unravelling of the further components and their assigning to the appropriate carrier formation stage within specific Golgi export pathways. Another key challenge will be to determine the regulatory mechanisms by which the functions of the TGN are controlled and coordinated both at the organelle level within the secretory pathway, and between the TGN and other global cellular functions and responses.

Abstract

The composition and identity of cell organelles are dictated by the flux of lipids and proteins that they receive and lose through cytosolic exchange and membrane trafficking. The trans-Golgi network (TGN) is a major sorting centre for cell lipids and proteins at the crossroads of the endocytic and exocytic pathways; it has a complex dynamic structure composed of a network of tubular membranes that generate pleiomorphic carriers targeted to different destinations. Live-cell imaging combined with three-dimensional tomography has recently provided the temporal and topographical framework that allows the assembly of the numerous molecular machineries so far implicated in sorting and trafficking at the TGN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TGN: sorting at the crossroads of the endocytic and exocytic pathways.
Figure 2: Ultrastructure of the TGN and post-Golgi carriers.
Figure 3: The formation stages of post-Golgi carriers.

Similar content being viewed by others

References

  1. Griffiths, G. & Simons, K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443 (1986). A seminal review that introduced the concept of the TGN as the exit and sorting station of the Golgi complex.

    CAS  PubMed  Google Scholar 

  2. Miller, S. E., Collins, B. M., McCoy, A. J., Robinson, M. S. & Owen, D. J. A SNARE–adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450, 570–574 (2007).

    CAS  PubMed  Google Scholar 

  3. Sandvig, K. & van Deurs, B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529, 49–53 (2002).

    CAS  PubMed  Google Scholar 

  4. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nature Rev. Mol. Cell Biol. 7, 9–19 (2006).

    CAS  Google Scholar 

  5. Farquhar, M. G. & Palade, G. E. The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. J. Cell Biol. 91, 77s–103s (1981).

    CAS  PubMed  Google Scholar 

  6. Hunziker, W. & Mellman, I. Relationships between sorting in the exocytic and endocytic pathways of MDCK cells. Semin. Cell Biol. 2, 397–410 (1991).

    CAS  PubMed  Google Scholar 

  7. Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000). The first study to analyse specifically the ultrastructure of TGN-derived carriers.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999). The first study to report the 3D reconstruction of the TGN.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Clermont, Y., Rambourg, A. & Hermo, L. Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anat. Rec. 242, 289–301 (1995). An extensive study of the TGN in different cell types.

    CAS  PubMed  Google Scholar 

  10. Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic β cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98, 2399–2406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mogelsvang, S., Marsh, B. J., Ladinsky, M. S. & Howell, K. E. Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5, 338–345 (2004).

    CAS  PubMed  Google Scholar 

  12. Novikoff, P. M., Novikoff, A. B., Quintana, N. & Hauw, J. J. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J. Cell Biol. 50, 859–886 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Levine, T. & Loewen, C. Inter-organelle membrane contact sites: through a glass, darkly. Curr. Opin. Cell Biol. 18, 371–378 (2006).

    CAS  PubMed  Google Scholar 

  14. Voelker, D. R. Bridging gaps in phospholipid transport. Trends Biochem. Sci. 30, 396–404 (2005).

    CAS  PubMed  Google Scholar 

  15. Perry, R. J. & Ridgway, N. D. Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta 1734, 220–234 (2005).

    CAS  PubMed  Google Scholar 

  16. Rizzuto, R., Duchen, M. R. & Pozzan, T. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci. STKE 2004, re1 (2004).

  17. Trucco, A. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell Biol. 6, 1071–1081 (2004). Demonstrates the plasticity of the Golgi-complex structure, including the TGN, which varies according to its activity state.

    CAS  PubMed  Google Scholar 

  18. Hand, A. R. & Oliver, C. Effects of secretory stimulation on the Golgi apparatus and GERL of rat parotid acinar cells. J. Histochem. Cytochem. 32, 403–412 (1984).

    CAS  PubMed  Google Scholar 

  19. Vetterlein, M., Ellinger, A., Neumuller, J. & Pavelka, M. Golgi apparatus and TGN during endocytosis. Histochem. Cell Biol. 117, 143–150 (2002).

    CAS  PubMed  Google Scholar 

  20. Griffiths, G. et al. The dynamic nature of the Golgi complex. J. Cell Biol. 108, 277–297 (1989). The first study to report the structural changes induced in the TGN by blocking the export of secretory cargoes.

    CAS  PubMed  Google Scholar 

  21. Ladinsky, M. S., Wu, C. C., McIntosh, S., McIntosh, J. R. & Howell, K. E. Structure of the Golgi and distribution of reporter molecules at 20 °C reveals the complexity of the exit compartments. Mol. Biol. Cell 13, 2810–2825 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998). The first study to report the existence and dynamics of the large tubular carriers that derive from the TGN.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Polishchuk, E. V., Di Pentima, A., Luini, A. & Polishchuk, R. S. Mechanism of constitutive export from the golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol. Biol. Cell 14, 470–485 (2003).

    Google Scholar 

  24. Puertollano, R. et al. Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network. Mol. Biol. Cell 14, 1545–1557 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Polishchuk, R.S., San Pietro, E., Di Pentima, A., Tete, S. & Bonifacino, J. S. Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes. Traffic 7, 1092–1103 (2006).

    CAS  PubMed  Google Scholar 

  26. Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–55 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    CAS  PubMed  Google Scholar 

  28. Puertollano, R., Martinez-Menarguez, J. A., Batista, A., Ballesta, J. & Alonso, M. A. An intact dilysine-like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus haemagglutinin cargo protein in epithelial Madin-Darby canine kidney cells. Mol. Biol. Cell 12, 1869–1883 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    CAS  PubMed  Google Scholar 

  30. Rodriguez-Boulan, E. & Musch, A. Protein sorting in the Golgi complex: shifting paradigms. Biochim. Biophys. Acta 1744, 455–464 (2005).

    CAS  PubMed  Google Scholar 

  31. Gu, F., Crump, C. M. & Thomas, G. Trans-Golgi network sorting. Cell. Mol. Life Sci. 58, 1067–1084 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005). A comprehensive review of the sorting mechanisms that operate at the TGN in epithelial cells.

    CAS  Google Scholar 

  33. Scheiffele, P. et al. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140, 795–806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Piper, R. C. & Luzio, J. P. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes. Curr. Opin. Cell Biol. 19, 459–465 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Scott, P. M. et al. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nature Cell Biol. 6, 252–259 (2004).

    CAS  PubMed  Google Scholar 

  37. Hinners, I. & Tooze, S. A. Changing directions: clathrin-mediated transport between the Golgi and endosomes. J. Cell Sci. 116, 763–771 (2003).

    CAS  PubMed  Google Scholar 

  38. Borgonovo, B., Ouwendijk, J. & Solimena, M. Biogenesis of secretory granules. Curr. Opin. Cell Biol. 18, 365–370 (2006).

    CAS  PubMed  Google Scholar 

  39. Delacour, D. et al. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8, 379–388 (2007).

    CAS  PubMed  Google Scholar 

  40. Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120, 353–358 (1993).

    CAS  PubMed  Google Scholar 

  41. Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

    CAS  PubMed  Google Scholar 

  42. Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 6955–6964 (2004).

    Google Scholar 

  43. Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    CAS  PubMed  Google Scholar 

  45. Deborde, S. et al. E. Clathrin is a key regulator of basolateral polarity. Nature (in the press).

  46. Folsch, H. The building blocks for basolateral vesicles in polarized epithelial cells. Trends Cell Biol. 15, 222–228 (2005).

    PubMed  Google Scholar 

  47. Gravotta, D. et al. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc. Natl Acad. Sci. USA 104, 1564–1569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cancino, J. et al. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol. Biol. Cell 18, 4872–4874 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Matteis, M. A. & Godi, A. PI-loting membrane traffic. Nature Cell Biol. 6, 487–492 (2004).

    CAS  PubMed  Google Scholar 

  50. Shin, H. W. & Nakayama, K. Dual control of membrane targeting by PtdIns(4)P and ARF. Trends Biochem. Sci. 29, 513–515 (2004).

    CAS  PubMed  Google Scholar 

  51. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    CAS  PubMed  Google Scholar 

  52. Wang, J. et al. PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol. Biol. Cell 18, 2646–2655 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. De Matteis, M. A., Di Campli, A. & D'Angelo, G. Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim. Biophys. Acta 1771, 761–768 (2007).

    CAS  PubMed  Google Scholar 

  54. Gleeson, P. A., Lock, J. G., Luke, M. R. & Stow, J. L. Domains of the TGN: coats, tethers and G proteins. Traffic 5, 315–326 (2004).

    CAS  PubMed  Google Scholar 

  55. Derby, M. C. et al. The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8, 758–773 (2007).

    CAS  PubMed  Google Scholar 

  56. Lieu, Z. Z. et al. The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol. Biol. Cell 18, 4979–4991 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Derby, M. C. et al. Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN. J. Cell Sci. 117, 5865–5874 (2004).

    CAS  PubMed  Google Scholar 

  58. Lock, J. G., Hammond, L. A., Houghton, F., Gleeson, P. A. & Stow, J. L. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6, 1142–1156 (2005).

    CAS  PubMed  Google Scholar 

  59. Kakinuma, T., Ichikawa, H., Tsukada, Y., Nakamura, T. & Toh, B. H. Interaction between p230 and MACF1 is associated with transport of a glycosyl phosphatidyl inositol-anchored protein from the Golgi to the cell periphery. Exp. Cell Res. 298, 388–398 (2004).

    CAS  PubMed  Google Scholar 

  60. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    CAS  Google Scholar 

  61. Neubrand, V. E. et al. γ-BAR, a novel AP-1-interacting protein involved in post-Golgi trafficking. EMBO J. 24, 1122–1133 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    CAS  PubMed  Google Scholar 

  63. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. de Figueiredo, P., Drecktrah, D., Katzenellenbogen, J. A., Strang, M. & Brown, W. J. Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc. Natl Acad. Sci. USA 95, 8642–8647 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Holthuis, J. C. & Levine, T. P. Lipid traffic: floppy drives and a superhighway. Nature Rev. Mol. Cell Biol. 6, 209–220 (2005).

    CAS  Google Scholar 

  66. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    CAS  PubMed  Google Scholar 

  67. D'Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007). Shows that a lipid-transfer protein involved in glycolipid metabolism has a role in TGN-to-PM transport.

    CAS  PubMed  Google Scholar 

  68. Mobius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55 (2002).

    CAS  PubMed  Google Scholar 

  69. Shemesh, T., Luini, A., Malhotra, V., Burger, K. N. & Kozlov, M. M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J. 85, 3813–3827 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Graham, T. R. Flippases and vesicle-mediated protein transport. Trends Cell Biol. 14, 670–677 (2004).

    CAS  PubMed  Google Scholar 

  71. Nilsson, T., Rabouille, C., Hui, N., Watson, R. & Warren, G. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J. Cell Sci. 109, 1975–1989 (1996).

    CAS  PubMed  Google Scholar 

  72. Jaulin, F., Xue, X., Rodriguez-Boulan, E. & Kreitzer, G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev. Cell 13, 511–522 (2007). Shows that epithelial cells can switch their kinesins for post-Golgi transport during the acquisition of polarity.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fan, S. et al. Polarity proteins control ciliogenesis via kinesin motor interactions. Curr. Biol. 14, 1451–1461 (2004).

    CAS  PubMed  Google Scholar 

  74. Jenkins, P. M. et al. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr. Biol. 16, 1211–1216 (2006).

    CAS  PubMed  Google Scholar 

  75. Grigoriev, I. et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev. Cell 13, 305–314 (2007).

    CAS  PubMed  Google Scholar 

  76. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    CAS  PubMed  Google Scholar 

  77. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    CAS  PubMed  Google Scholar 

  78. Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol. 155, 77–88 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol. 5, 126–136 (2003).

    CAS  PubMed  Google Scholar 

  82. Roux., A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    CAS  PubMed  Google Scholar 

  83. Bard, F. & Malhotra, V. The formation of TGN-to-plasma-membrane transport carriers. Annu. Rev. Cell Dev. Biol. 22, 439–455 (2006).

    CAS  PubMed  Google Scholar 

  84. Jamora, C. et al. Gβγ-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98, 59–68 (1999).

    CAS  PubMed  Google Scholar 

  85. Diaz Anel, A. M. Phospholipase C β3 is a key component in the Gβγ/PKCη/PKD-mediated regulation of trans-Golgi network to plasma membrane transport. Biochem. J. 406, 157–165 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001). The first demonstration that PKD is involved in the fission step during carrier biogenesis at the TGN.

    CAS  PubMed  Google Scholar 

  87. Orth, J. D. & McNiven, M. A. Dynamin at the actin–membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

    CAS  PubMed  Google Scholar 

  88. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  89. McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  90. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol. 7, 570–580 (2005). Demonstrates that distinct fission machineries release distinct carriers at the TGN.

    CAS  PubMed  Google Scholar 

  91. Cao, H. et al. Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nature Cell Biol. 7, 483–492 (2005).

    CAS  PubMed  Google Scholar 

  92. Kessels, M. M., Dong, J., Leibig, W., Westermann, P. & Qualmann, B. Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J. Cell Sci. 119, 1504–1516 (2006).

    CAS  PubMed  Google Scholar 

  93. Vieira, O. V., Verkade, P., Manninen, A. & Simons, K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J. Cell Biol. 170, 521–526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Corda, D., Colanzi, A. & Luini, A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol. 16, 167–173 (2006).

    CAS  PubMed  Google Scholar 

  95. Yang, J. S. et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nature Cell Biol. 7, 880–886 (2005).

    CAS  PubMed  Google Scholar 

  97. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 7, 404–414 (2006).

    CAS  Google Scholar 

  98. Perrais, D. & Merrifield, C. J. Dynamics of endocytic vesicle creation. Dev. Cell 9, 581–592 (2005).

    CAS  PubMed  Google Scholar 

  99. Godi, A. et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl Acad. Sci. USA 95, 8607–8612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Egea, G., Lazaro-Dieguez, F. & Vilella, M. Actin dynamics at the Golgi complex in mammalian cells. Curr. Opin. Cell Biol. 18, 168–178 (2006).

    CAS  PubMed  Google Scholar 

  101. Cohen, D., Musch, A. & Rodriguez-Boulan, E. Selective control of basolateral membrane protein polarity by cdc42. Traffic 2, 556–564 (2001).

    CAS  PubMed  Google Scholar 

  102. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Percival, J. M. et al. Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol. Biol. Cell 15, 268–280 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    CAS  PubMed  Google Scholar 

  105. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosso, S. et al. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol. Biol. Cell 15, 3433–3449 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J. Cell Biol. 165, 781–788 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lazaro-Dieguez, F. et al. Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett. 581, 3875–3881 (2007).

    CAS  PubMed  Google Scholar 

  109. Rybakin, V. et al. Crn7 interacts with AP-1 and is required for the maintenance of Golgi morphology and protein export from the Golgi. J. Biol. Chem. 281, 31070–31078 (2006).

    CAS  PubMed  Google Scholar 

  110. Paglini, G., Peris, L., Diez-Guerra, J., Quiroga, S. & Caceres, A. The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep. 2, 1139–1144 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kerkhoff, E. et al. The Spir actin organizers are involved in vesicle transport processes. Curr. Biol. 11, 1963–1968 (2001).

    CAS  PubMed  Google Scholar 

  112. Guerriero, C. J., Weixel, K. M., Bruns, J. R. & Weisz, O. A. Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. J. Biol. Chem. 281, 15376–15384 (2006).

    CAS  PubMed  Google Scholar 

  113. Rozelle, A. L. et al. Phosphatidylinositol 4, 5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  114. DePina, A. S., Wollert, T. & Langford, G. M. Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell. Motil. Cytoskeleton 64, 739–755 (2007).

    CAS  PubMed  Google Scholar 

  115. Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol. 138, 291–306 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fath, K. R. Characterization of myosin-II binding to Golgi stacks in vitro. Cell. Motil. Cytoskeleton 60, 222–235 (2005).

    CAS  PubMed  Google Scholar 

  117. Simon, J. P. et al. Coatomer, but not P200/myosin II, is required for the in vitro formation of trans-Golgi network-derived vesicles containing the envelope glycoprotein of vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 95, 1073–1078 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Au, J. S., Puri, C., Ihrke, G., Kendrick-Jones, J. & Buss, F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J. Cell Biol. 177, 103–114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sallese, M., Pulvirenti, T. & Luini, A. The physiology of membrane transport and endomembrane-based signalling. EMBO J. 25, 2663–73 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    CAS  PubMed  Google Scholar 

  121. Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).

    CAS  PubMed  Google Scholar 

  122. Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).

    CAS  PubMed  Google Scholar 

  123. Antonny, B. & Schekman, R. ER export: public transportation by the COPII coach. Curr. Opin. Cell Biol. 13, 438–443 (2001).

    CAS  PubMed  Google Scholar 

  124. Watanabe, R. & Riezman, H. Differential ER exit in yeast and mammalian cells. Curr. Opin. Cell Biol. 16, 350–355 (2004).

    CAS  PubMed  Google Scholar 

  125. Appenzeller-Herzog, C. & Hauri, H. P. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci. 119, 2173–2183 (2006).

    CAS  PubMed  Google Scholar 

  126. Vuong, T. T., Prydz, K. & Tveit, H. Differences in the apical and basolateral pathways for glycosaminoglycan biosynthesis in Madin-Darby canine kidney cells. Glycobiology 16, 326–332 (2006).

    CAS  PubMed  Google Scholar 

  127. Futter, C. E., Connolly, C. N., Cutler, D. F. & Hopkins, C. R. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem. 270, 10999–11003 (1995).

    CAS  PubMed  Google Scholar 

  128. Leitinger, B., Hille-Rehfeld, A. & Spiess, M. Biosynthetic transport of the asialoglycoprotein receptor H1 to the cell surface occurs via endosomes. Proc. Natl Acad. Sci. USA 92, 10109–10113 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Manderson, A. P., Kay, J. G., Hammond, L. A., Brown, D. L. & Stow, J. L. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFα. J. Cell Biol. 178, 57–69 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol. 167, 531–543 (2004). Shows a transendosomal pathway for the transport of VSVG to the basolateral PM in epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zegers, M. M. & Hoekstra, D. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem. J. 336, 257–269 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Polishchuk, R., Di Pentima, A. & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nature Cell Biol. 6, 297–307 (2004).

    CAS  PubMed  Google Scholar 

  133. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature Rev. Mol. Cell Biol. 3, 753–766 (2002).

    CAS  Google Scholar 

  134. Tafesse, F. G., Ternes, P. & Holthuis, J. C. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421–29425 (2006).

    CAS  PubMed  Google Scholar 

  135. Nylund, M. et al. Molecular features of phospholipids that affect glycolipid transfer protein-mediated galactosylceramide transfer between vesicles. Biochim. Biophys. Acta 1758, 807–812 (2006).

    CAS  PubMed  Google Scholar 

  136. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003). The first demonstration that the ceramide-transfer protein CERT is required for sphingomyelin synthesis.

    CAS  PubMed  Google Scholar 

  137. Orci, L. et al. Heterogeneous distribution of filipin–cholesterol complexes across the cisternae of the Golgi apparatus. Proc. Natl Acad. Sci. USA 78, 293–297 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pagano, R. E., Sepanski, M. A. & Martin, O. C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J. Cell Biol. 109, 2067–2079 (1989).

    CAS  PubMed  Google Scholar 

  139. Grove, S. N., Bracker, C. E. & Morre, D. J. Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatus-vesicle complex. Science 161, 171–173 (1968).

    CAS  PubMed  Google Scholar 

  140. Brugger, B. et al. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151, 507–518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gillingham, A. K. & Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23, 579–611 (2007).

    CAS  PubMed  Google Scholar 

  142. Donaldson, J. G., Honda, A. & Weigert, R. Multiple activities for Arf1 at the Golgi complex. Biochim. Biophys. Acta 1744, 364–373 (2005).

    CAS  PubMed  Google Scholar 

  143. Shrivastava-Ranjan, P. et al. Mint3/X11γ is an Arf-dependent adaptor that regulates the traffic of the Alzheimer's precursor protein from the TGN. Mol. Biol. Cell 19, 51–64 (2007).

    PubMed  Google Scholar 

  144. Ang, A. L., Folsch, H., Koivisto, U. M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    CAS  PubMed  Google Scholar 

  146. Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 169, 285–295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hattula, K. & Peranen, J. FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr. Biol. 10, 1603–1606 (2000).

    CAS  PubMed  Google Scholar 

  148. Chen, Y. T., Holcomb, C. & Moore, H. P. Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc. Natl Acad. Sci. USA 90, 6508–6512 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Schuck, S. et al. Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 8, 47–60 (2007).

    CAS  PubMed  Google Scholar 

  150. Goldenring, J. R. et al. Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am. J. Physiol. 270, G515–G525 (1996).

    CAS  PubMed  Google Scholar 

  151. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    CAS  PubMed  Google Scholar 

  152. Chen, W., Feng, Y., Chen, D. & Wandinger-Ness, A. Rab11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol. Biol. Cell 9, 3241–3257 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rodriguez-Gabin, A. G., Cammer, M., Almazan, G., Charron, M. & Larocca, J. N. Role of rRAB22b, an oligodendrocyte protein, in regulation of transport of vesicles from trans Golgi to endocytic compartments. J. Neurosci. Res. 66, 1149–1160 (2001).

    CAS  PubMed  Google Scholar 

  154. Estrada, L., Caron, E. & Gorski, J. L. Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum. Mol. Genet. 10, 485–495 (2001).

    CAS  PubMed  Google Scholar 

  155. Dubois, T. et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nature Cell Biol. 7, 353–364 (2005).

    CAS  PubMed  Google Scholar 

  156. Saucan, L. & Palade, G. E. Membrane and secretory proteins are transported from the Golgi complex to the sinusoidal plasmalemma of hepatocytes by distinct vesicular carriers. J. Cell Biol. 125, 733–741 (1994).

    CAS  PubMed  Google Scholar 

  157. Orzech, E., Cohen, S., Weiss, A. & Aroeti, B. Interactions between the exocytic and endocytic pathways in polarized Madin-Darby canine kidney cells. J. Biol. Chem. 275, 15207–15219 (2000).

    CAS  PubMed  Google Scholar 

  158. Orzech, E., Schlessinger, K., Weiss, A., Okamoto, C. T. & Aroeti, B. Interactions of the AP-1 Golgi adaptor with the polymeric immunoglobulin receptor and their possible role in mediating brefeldin A-sensitive basolateral targeting from the trans-Golgi network. J. Biol. Chem. 274, 2201–2215 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to R. Polishchuk for providing the images shown in Fig. 2, we thank the members of the Department of Cell Biology and Oncology (DCBO) for useful discussions, C. P. Berrie for editorial assistance and E. Fontana for artwork. The authors acknowledge the support of Telethon and Italian Association for Cancer Research (AIRC). We would also like to apologize to those whose primary research could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta De Matteis.

Related links

Related links

DATABASES

InterPro

GAT

PH

UniProtKB

CERT

OSBP1

ARF

AP3

AP1B

AP4

Rab5

FAPP2

arfaptin-2

endophilin B

PLA2

DRS2

KIF5B

KIF3A

KIF3B

KIF17

Rab6

KIFC3

annexin-XIIIb

GCC185

n-CAM

SEC6

PKC

PKD

CDC42

LIMK1

HIP1R

coronin-7

SPIR-1

MACF1

optineurin

SAR1

FURTHER INFORMATION

Maria Antonietta De Matteis' homepage

Glossary

Early/sorting endosomes

Tubular, vesicular structures that receive direct input from the plasma membrane and that are precursors of the mature endosomes; they have a key role in sorting material for recycling or degradation.

Late endosomes

Endosomes that receive cargo from early/sorting endosomes and deliver them to lysosomes, where the cargo molecules are degraded. They contain many vesicles in their lumen, and are also known as multivesicular bodies.

Recycling endosomes

Endosomal compartments that are mainly composed of narrow-diameter tubules. A large fraction of recycling membrane components pass through the recycling endosomes, which might also be an intermediate station in trans-Golgi network to plasma membrane trafficking.

Golgi stack

A stack of ordered, flat, membranous cisternae with a recognizable cis–trans polarity.

Secretory granules

Organelles present in secretory cells (exocrine and endocrine cells) that derive from the trans-Golgi network. They function as a reservoir for enzymes and hormones, and they release their contents in response to extracellular stimuli.

SNAREs

(Soluble N-ethyl-maleimide-sensitive fusion protein (NSF)-attachment-protein (SNAP) receptors). A family of membrane-tethered, coiled-coil proteins that regulate fusion reactions and targeted specificity in the vacuolar system.

Sorting signals

Sequence motifs or structural determinants that interact with specific recognition proteins and determine the trafficking or localization of cellular proteins.

Correlative light-electron microscopy

(CLEM). A technique by which the ultrastructure and dynamics of an individual object can be observed.

Clathrin

The main component of a vesicle coating that is involved in membrane transport in both the endocytic and biosynthetic pathways.

Membrane contact sites

Sites of close apposition of membranes (≤10 nm), either belonging to the same organelle (that is, between ER elements or Golgi cisternae) or to different organelles (usually between the ER and another organelle, such as mitochondria, the plasma membrane, vacuoles or the Golgi complex).

Coatomer protein complex-II

(COPII). A protein complex consisting of two heterodimers, SEC23–SEC24 and SEC13–SEC31, that are recruited to ER exit sites by the small GTPase SAR1. COPII promotes the formation of Golgi-directed carriers.

Coatomer protein complex-I

(COPI). A protein complex that is recruited to membranes by ARF (ADP-ribosylation factor) GTPases and that mediates intra-Golgi and Golgi-to-ER retrograde transport.

Transcytosis

A process by which materials are transported across a polarized cell from one membrane domain (for example, the basolateral plasma membrane) to another (for example, the apical plasma membrane).

VSVG

(Vesicular stomatitis virus glycoprotein). A viral glycoprotein that in its temperature-sensitive form (ts045) is used as a synchronizable secretory reporter protein, which exploits its property of being retained in the ER at 40 °C, and is transported along the exocytic pathway upon removal of the 40 °C temperature block.

Adaptors

Proteins that recruit clathrin to membranes and concentrate specific transmembrane proteins in clathrin-coated areas of the membrane.

GGA protein

(Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding protein). A monomeric clathrin adaptor that mediates trans-Golgi network-to-endosome transport of mannose-6-phosphate receptors and other transmembrane proteins. They are also involved in targeting transmembrane proteins to the multivesicular-body pathway.

Membrane microdomain

A localized membrane region that differs from surrounding regions in their lipid composition and order. There are probably many types of lipid microdomains that coexist within the same membrane bilayer. Lipid rafts are one type of membrane microdomain.

GPI anchor

The function of this post-translational modification is to attach proteins to the exoplasmic leaflet of membranes and possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol, to which a carbohydrate chain is linked through the C6 hydroxyl of the inositol, and it is linked to the protein through an ethanolamine phosphate moiety.

GRIP-golgins

A family of coiled-coil proteins that includes golgin-245, golgin-97, CCG88 and CCG185, all of which have a C-terminal, 50-amino-acid domain that is known as the GRIP domain, which is responsible for their targeting to the trans-Golgi network.

Transendosomal route

A route that connects the trans-Golgi network and the plasma membrane, and passes through recycling endosomes.

BAR family

A family of proteins that contains the BAR (Bin, amphiphysin and Rvs) domain, a banana-shaped domain that binds to highly curved membranes.

Lipid flippase

A protein that facilitates the translocation of a phospholipid or glycosphingolipid from one leaflet of a membrane bilayer to the other.

Mannose-6-phosphate receptor

(M6PR). Receptor that is located at the TGN and, at low levels, at the plasma membrane. It is responsible for targeting several soluble lysosomal hydrolases from the Golgi complex, through endosomes, to the lysosomes.

Actin comets

Short actin filaments that function to propel intracellular organelles or pathogens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Matteis, M., Luini, A. Exiting the Golgi complex. Nat Rev Mol Cell Biol 9, 273–284 (2008). https://doi.org/10.1038/nrm2378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing