Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Embryonic stem-cell culture as a tool for developmental cell biology

Abstract

The cell biology of the early processes of mammalian embryogenesis, such as germ-layer formation, has been technically challenging to study owing to the size and accessibility of mammalian embryos. Embryonic stem cells, which can generate the three germ layers in vitro, are useful for studying embryogenesis at the cellular level. So, how can the study of embryonic stem cells and their differentiation provide a deeper understanding of the cell biology of early development?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Derivation of embryonic stem cells.
Figure 2: Comparison of three protocols for ES-cell differentiation culture.
Figure 3: Relationships between a set of ES-derived cells and embryonically derived cells.

Similar content being viewed by others

References

  1. Dickinson, M. Multimodal imaging of mouse development: tools for the postgenomic era. Dev. Dyn. 235, 2386–2400 (2006).

    Article  Google Scholar 

  2. Jones, E. A. et al. Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34, 228–235 (2002).

    Article  CAS  Google Scholar 

  3. Evans, M. & Kaufman, M. Establishment in culture of pluripotent cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  Google Scholar 

  4. Martin, G. Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  Google Scholar 

  5. Thomson, J. A. et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259 (1996).

    Article  CAS  Google Scholar 

  6. Boyer, L. A., Mathur, D. & Jaenisch, R. Molecular control of pluripotency. Curr. Opin. Genet. Dev. 16, 455–462 (2006).

    Article  CAS  Google Scholar 

  7. Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007).

    Article  CAS  Google Scholar 

  8. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  Google Scholar 

  9. Mitsui, K. et al. The homeoprotein NANOG is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  10. Chambers, I. et al. Functional expression cloning of NANOG, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  11. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  Google Scholar 

  12. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  Google Scholar 

  13. Suzuki, A. et al. NANOG binds to SMAD1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 10294–10299 (2006).

    Article  CAS  Google Scholar 

  14. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  Google Scholar 

  15. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  Google Scholar 

  16. Loh, Y. H. et al. The OCT4 and NANOG transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    Article  CAS  Google Scholar 

  17. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

    Article  CAS  Google Scholar 

  18. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  19. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  Google Scholar 

  20. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  21. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  22. Takahashi, K., Mitsui, K. & Yamanaka, S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423, 541–545 (2003).

    Article  CAS  Google Scholar 

  23. Takahashi, K., Murakami, M. & Yamanaka, S. Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochem. Soc. Trans 33, 1522–1525 (2005).

    Article  CAS  Google Scholar 

  24. Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896 (2005).

    Article  CAS  Google Scholar 

  25. Tanaka, Y., Patestos, N. P., Maekawa, T. & Ishii, S. B-myb is required for inner cell mass formation at an early stage of development. J. Biol. Chem. 274, 28067–28070 (1999).

    Article  CAS  Google Scholar 

  26. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  27. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  CAS  Google Scholar 

  28. Nishikawa, S. I., Nishikawa, S., Hirashima, M., Matsuyoshi, N. & Kodama, H. Progressive lineage analysis by cell sorting and culture identifies FLK1+ VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125, 1747–1757 (1998).

    CAS  PubMed  Google Scholar 

  29. Fujikura, J. et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789 (2002).

    Article  CAS  Google Scholar 

  30. Martin, G. R. & Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA 72, 1441–1445 (1975).

    Article  CAS  Google Scholar 

  31. Coucouvanis, E. & Martin, G. R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–287 (1995).

    Article  CAS  Google Scholar 

  32. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  Google Scholar 

  33. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11457–11462 (2003).

    Article  CAS  Google Scholar 

  34. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004).

    Article  CAS  Google Scholar 

  35. Axelrod, H. R. Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev. Biol. 101, 225–228 (1984).

    Article  CAS  Google Scholar 

  36. de Pooter, R. F., Cho, S. K., Carlyle, J. R. & Zuniga-Pflucker, J. C. In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood 102, 1649–1653 (2003).

    Article  CAS  Google Scholar 

  37. Sakurai, H. et al. In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24, 575–586 (2006).

    Article  CAS  Google Scholar 

  38. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  Google Scholar 

  39. Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl Acad. Sci. USA 99, 1580–1585 (2002).

    Article  CAS  Google Scholar 

  40. Ueno, M. et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl Acad. Sci. USA 103, 9554–9559 (2006).

    Article  CAS  Google Scholar 

  41. Roy, N. S. et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by co-culture with telomerase-immortalized midbrain astrocytes. Nature Med. 12, 1259–1268 (2006).

    Article  CAS  Google Scholar 

  42. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  Google Scholar 

  43. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotech. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  44. Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–4374 (2005).

    Article  CAS  Google Scholar 

  45. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotech. 23, 1542–1550 (2005).

    Article  CAS  Google Scholar 

  46. Kabrun, N. et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124, 2039–2048 (1997).

    CAS  PubMed  Google Scholar 

  47. Ng, E. S. et al. The primitive streak gene Mixl1 is required for efficient haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 132, 873–884 (2005).

    Article  CAS  Google Scholar 

  48. Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624 (2006).

    Article  CAS  Google Scholar 

  49. Johansson, B. M. & Wiles, M. V. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151 (1995).

    Article  CAS  Google Scholar 

  50. Lindsley, R. C., Gill, J. G., Kyba, M., Murphy, T. L. & Murphy, K. M. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133, 3787–3796 (2006).

    Article  CAS  Google Scholar 

  51. Gadue, P., Huber, T. L., Paddison, P. J. & Keller, G. M. Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 16806–16811 (2006).

    Article  CAS  Google Scholar 

  52. Aiba, K. et al. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24, 889–895 (2006).

    Article  CAS  Google Scholar 

  53. Chen, S. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl Acad. Sci. USA 103, 17266–17271 (2006).

    Article  CAS  Google Scholar 

  54. Michiels, F. et al. Arrayed adenoviral expression libraries for functional screening. Nature Biotech. 20, 1154–1157 (2002).

    Article  CAS  Google Scholar 

  55. Mousses, S. et al. RNAi microarray analysis in cultured mammalian cells. Genome Res. 13, 2341–2347 (2003).

    Article  CAS  Google Scholar 

  56. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods 3, 385–390 (2006).

    Article  CAS  Google Scholar 

  57. Kuschel, C. et al. Cell adhesion profiling using extracellular matrix protein microarrays. Biotechniques 40, 523–531 (2006).

    Article  CAS  Google Scholar 

  58. Wakayama, S. et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24, 2023–2033 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of the Laboratory of Stem Cell Research is supported by grants from the Leading Project for Realization of Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Ichi Nishikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Shin-Ichi Nishikawa's homepage

Glossary

Embryonic carcinoma

A type of testicular cancer that maintains the potential to give rise to mature tissues.

Mesoderm

The middle germ layer of the developing embryo that occupies an intermediate position between the ectoderm and the endoderm. It gives rise to the skeleton, muscles and connective tissue.

Pluripotent

Embryonic stem cells that are able to form all of the cell lineages of the body, including germ cells, and some or even all extra-embryonic cell types.

Polycomb

A class of proteins — originally described in Drosophila melanogaster — that maintains the stable and heritable repression of several genes.

Primitive endoderm

The extra-embryonic tissue that gives rise to the visceral and parietal endoderm; it diverges directly from the inner cell mass to form the outer layer of the embryo.

Teratoma

Tumours that contain various differentiated cells from all three primary germ layers.

Trophectoderm

The outer layer of the blastocyst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikawa, SI., Jakt, L. & Era, T. Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 8, 502–507 (2007). https://doi.org/10.1038/nrm2189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing