Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Happy Hollidays: 40th anniversary of the Holliday junction

Abstract

In 1964, the geneticist Robin Holliday proposed a mechanism of DNA-strand exchange that attempted to explain gene-conversion events that occur during meiosis in fungi. His proposal marked the birthday of the now famous cross-stranded DNA structure, or Holliday junction. To understand the importance of the Holliday model we must look back in the history of science beyond the last 40 years, to a time when theories of heredity were being proposed by Gregor Johann Mendel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Mendelian ratio.
Figure 2: Robin Holliday.
Figure 3: The Holliday model.
Figure 4: Structure of the Holliday junction.
Figure 5: Structural comparison of the Holliday-junction resolvases.
Figure 6: Three-dimensional structure of RuvC– and RuvAB–Holliday-junction complexes.
Figure 7: Homologous recombination, the big picture.

References

  1. Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. Camb. 5, 282–304 (1964).

    Article  Google Scholar 

  2. Doniger, J., Warner, R. C. & Tessman, I. Role of circular dimer DNA in the primary recombination mechanism of bacteriophage S13. Nature New Biol. 242, 9–12 (1973).

    Article  CAS  Google Scholar 

  3. Thompson, B. J. et al. Figure-8 configuration of dimers of S13 and ØX174 replicative form DNA. J. Mol. Biol. 91, 409–419 (1975).

    Article  CAS  Google Scholar 

  4. Benbow, R. M., Zuccarelli, A. J. & Sinsheimer, R. L. Recombinant DNA molecules of ØX174. Proc. Natl Acad. Sci. USA 72, 235–239 (1975).

    Article  CAS  Google Scholar 

  5. Potter, H. & Dressler, D. DNA recombination: in vivo and in vitro studies. Cold Spring Harb. Symp. Quant. Biol. XLIII, 969–985 (1979).

    Article  Google Scholar 

  6. Bell, L. & Byers, B. Occurrence of crossed strand-exchange forms in yeast during meiosis. Proc. Natl Acad. Sci. USA 76, 3445–3449 (1979).

    Article  CAS  Google Scholar 

  7. Cunningham, R. P., DasGupta, C., Shibata, T. & Radding, C. M. Homologous pairing in genetic recombination: RecA protein makes joint molecules of gapped circular DNA and closed circular DNA. Cell 20, 223–235 (1980).

    Article  CAS  Google Scholar 

  8. West, S. C., Countryman, J. K. & Howard-Flanders, P. Enzymatic formation of biparental figure-8 molecules from plasmid DNA and their resolution in Escherichia coli. Cell 32, 817–829 (1983).

    Article  CAS  Google Scholar 

  9. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  Google Scholar 

  10. Lin, F. L., Sperle, K. & Sternberg, N. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4, 1020–1034 (1984).

    Article  CAS  Google Scholar 

  11. Nassif, N., Penney, J., Pal, S., Engels, W. R. & Gloor, G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994).

    Article  CAS  Google Scholar 

  12. Kallenbach, N. R., Ma, R. I. & Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    Article  CAS  Google Scholar 

  13. Lilley, D. M. J. Structures of helical junctions in nucleic acids. Q. Rev. Biophys. 33, 109–159 (2000).

    Article  CAS  Google Scholar 

  14. Nowakowski, J., Shim, P. J., Prasad, G. S., Stout, C. D. & Joyce, G. F. Crystal structure of an 82-nucleotide RNA–DNA complex formed by the 10-23 DNA enzyme. Nature Struct. Biol. 6, 151–156 (1999).

    Article  CAS  Google Scholar 

  15. Ortiz-Lombardia, M. et al. Crystal structure of a DNA Holliday junction. Nature Struct. Biol. 6, 913–917 (1999).

    Article  CAS  Google Scholar 

  16. Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Ho, P. S. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA 97, 3971–3976 (2000).

    Article  CAS  Google Scholar 

  17. Mizuuchi, K., Kemper, B., Hays, J. & Weisberg, R. A. T4 endonuclease VII cleaves Holliday structures. Cell 29, 357–365 (1982).

    Article  CAS  Google Scholar 

  18. Sharples, G. J. The X philes: structure-specific endonucleases that resolve Holliday junctions. Mol. Microbiol. 39, 823–834 (2001).

    Article  CAS  Google Scholar 

  19. Elborough, K. M. & West, S. C. Resolution of synthetic Holliday junctions in DNA by an endonuclease activity from calf thymus. EMBO J. 9, 2931–2936 (1990).

    Article  CAS  Google Scholar 

  20. Boddy, M. N. et al. Mus81–Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537–548 (2001).

    Article  CAS  Google Scholar 

  21. Chen, X. B. et al. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol. Cell 8, 1117–1127 (2001).

    Article  CAS  Google Scholar 

  22. Hollingsworth, N. M. & Brill, S. J. The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev. 18, 117–125 (2004).

    Article  CAS  Google Scholar 

  23. Constantinou, A., Chen, X. -B., McGowan, C. H. & West, S. C. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 21, 5577–5585 (2002).

    Article  CAS  Google Scholar 

  24. Liu, Y., Masson, J. -Y., Shah, R., O'Regan, P. & West, S. C. RAD51C is required for Holliday junction processing in mammalian cells. Science 303, 243–246 (2004).

    Article  CAS  Google Scholar 

  25. Ariyoshi, M. et al. Atomic structure of the RuvC resolvase: a Holliday junction-specific endonuclease from E. coli. Cell 78, 1063–1072 (1994).

    Article  CAS  Google Scholar 

  26. Ceschini, S. et al. Crystal structure of the fission yeast mitochondrial Holliday junction resolvase Ydc2. EMBO J. 20, 6601–6611 (2001).

    Article  CAS  Google Scholar 

  27. Raaijmakers, H. et al. X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture. EMBO J. 18, 1447–1458 (1999).

    Article  CAS  Google Scholar 

  28. Hadden, J. M., Convery, M. A., Declais, A. C., Lilley, D. M. J. & Phillips, S. E. V. Crystal structure of the Holliday junction resolving enzyme T7 endonuclease I. Nature Struct. Biol. 8, 62–67 (2001).

    Article  CAS  Google Scholar 

  29. Bond, C. S., Kvaratskhelia, M., Richard, D., White, M. F. & Hunter, W. N. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Proc. Natl Acad. Sci. USA 98, 5509–5514 (2001).

    Article  CAS  Google Scholar 

  30. Rafferty, J. B. et al. The structure of Escherichia coli RusA endonuclease reveals a new Holliday junction DNA binding fold. Structure 11, 1557–1567 (2003).

    Article  CAS  Google Scholar 

  31. West, S. C. Processing of recombination intermediates by the RuvABC proteins. Annu. Rev. Genet. 31, 213–244 (1997).

    Article  CAS  Google Scholar 

  32. Holliday, R. Molecular aspects of genetic exchange and gene conversion. Genetics 78, 273–287 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hargreaves, D. et al. Crystal structure of E. coli RuvA with bound DNA Holliday junction at 6Å resolution. Nature Struct. Biol. 5, 441–446 (1998).

    Article  CAS  Google Scholar 

  34. Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H. & Morikawa, K. Crystal structure of the Holliday junction DNA in complex with a single RuvA tetramer. Proc. Natl Acad. Sci. USA 97, 8257–8262 (2000).

    Article  CAS  Google Scholar 

  35. Parsons, C. A., Stasiak, A., Bennett, R. J. & West, S. C. Structure of a multisubunit complex that promotes DNA branch migration. Nature 374, 375–378 (1995).

    Article  CAS  Google Scholar 

  36. Yamada, K. et al. Crystal structure of the RuvA–RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Mol. Cell 10, 671–681 (2002).

    Article  CAS  Google Scholar 

  37. Constantinou, A., Davies, A. A. & West, S. C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104, 259–268 (2001).

    Article  CAS  Google Scholar 

  38. Constantinou, A. et al. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1, 80–84 (2000).

    Article  CAS  Google Scholar 

  39. Karow, J. K., Constantinou, A., Li, J. -L., West, S. C. & Hickson, I. D. The Bloom's syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl Acad. Sci. USA 97, 6504–6508 (2000).

    Article  CAS  Google Scholar 

  40. Garcia, P. L., Liu, Y., Jiricny, J., West, S. C. & Janscak, P. Human RecQ5β, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 23, 2882–2891 (2004).

    Article  CAS  Google Scholar 

  41. Hickson, I. D. RecQ helicase: caretakers of the genome. Nature Rev. Mol. Cell Biol. 3, 169–178 (2003).

    CAS  Google Scholar 

  42. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

    Article  CAS  Google Scholar 

  43. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    Article  CAS  Google Scholar 

  44. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  45. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    Article  CAS  Google Scholar 

  46. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  Google Scholar 

  47. Osman, F., Dixon, J., Doe, C. L. & Whitby, M. C. Generating crossovers by resolution of nicked Holliday junctions: a role of Mus81–Eme1 in meiosis. Mol. Cell 12, 761–774 (2003).

    Article  CAS  Google Scholar 

  48. Gaillard, P. -H. L., Noguchi, E., Shanahan, P. & Russell, P. The endogenous Mus81–Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Mol. Cell 12, 747–759 (2003).

    Article  CAS  Google Scholar 

  49. Heyer, W. D. Recombination: Holliday junction resolution and crossover formation. Curr. Biol. 14, R56–R58 (2004).

    Article  CAS  Google Scholar 

  50. Fabre, F., Chan, A., Heyer, W. D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/Mus81, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl Acad. Sci. USA 99, 16887–16892 (2002).

    Article  CAS  Google Scholar 

  51. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    Article  CAS  Google Scholar 

  52. Borner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article  Google Scholar 

  53. Rafferty, J. B. et al. Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science 274, 415–421 (1996).

    Article  CAS  Google Scholar 

  54. Duckett, D. R. et al. The structure of the Holliday junction and its resolution. Cell 55, 79–89 (1988).

    Article  CAS  Google Scholar 

  55. Dunderdale, H. J. et al. Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins. Nature 354, 506–510 (1991).

    Article  CAS  Google Scholar 

  56. Iwasaki, H., Takahagi, M., Shiba, T., Nakata, A. & Shinagawa, H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J. 10, 4381–4389 (1991).

    Article  CAS  Google Scholar 

  57. Tsaneva, I. R., Müller, B. & West, S. C. ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell 69, 1171–1180 (1992).

    Article  CAS  Google Scholar 

  58. Iwasaki, H., Takahagi, M., Nakata, A. & Shinagawa, H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev. 6, 2214–2220 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the West laboratory is supported by Cancer Research UK, and by the Breast Cancer Campaign. Y.L. is a recipient of a post-doctoral fellowship from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

archaeal Hjc

archaeal Hje

RecA

RusA

ruvA

ruvB

RuvC

T4 endonuclease VII

Saccharomyces genome database

Cce1

Mus81

Ndt80

Sgs1

Top3

S. pombe gene database

Ydc2

SwissProt

BLM

RAD51

RAD51C

RAD52

SPO11

topoisomerase IIIα

WRN

XRCC3

FURTHER INFORMATION

Bill Engels's laboratory (movies of Holliday junctions and mechanisms of recombination)

Human DNA-repair genes

NCBI structure database

University of Sheffield: model for the mechanism of RuvAB-mediated branch migration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., West, S. Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5, 937–944 (2004). https://doi.org/10.1038/nrm1502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing