Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genes and molecular pathways underpinning ciliopathies

Key Points

  • There are two types of cilia, motile and non-motile primary, which have different roles in human physiology, cell signalling and development.

  • Ciliopathies are human disorders that arise from the dysfunction of motile and/or non-motile cilia. At least 35 different ciliopathies collectively affect nearly all organ systems, with prevalent phenotypes including polycystic kidney disease, retinal degeneration, obesity, skeletal malformations and brain anomalies.

  • There are more than 180 known ciliopathy-associated proteins, and over 240 established ciliary proteins that represent candidate ciliopathy proteins.

  • The basal body, transition zone and intraflagellar transport system represent hotspots for ciliopathies.

  • Proteins that do not specifically localize to cilia may influence ciliary functions and cause ciliopathies, and ciliary proteins can have extraciliary functions.

  • Many complementary approaches, coupled with the sequencing of the genomes of patients, are being carried out to uncover additional ciliary proteins and their associations with known or novel ciliopathies.

Abstract

Motile and non-motile (primary) cilia are nearly ubiquitous cellular organelles. The dysfunction of cilia causes diseases known as ciliopathies. The number of reported ciliopathies (currently 35) is increasing, as is the number of established (187) and candidate (241) ciliopathy-associated genes. The characterization of ciliopathy-associated proteins and phenotypes has improved our knowledge of ciliary functions. In particular, investigating ciliopathies has helped us to understand the molecular mechanisms by which the cilium-associated basal body functions in early ciliogenesis, as well as how the transition zone functions in ciliary gating, and how intraflagellar transport enables cargo trafficking and signalling. Both basic biological and clinical studies are uncovering novel ciliopathies and the ciliary proteins involved. The assignment of these proteins to different ciliary structures, processes and ciliopathy subclasses (first order and second order) provides insights into how this versatile organelle is built, compartmentalized and functions in diverse ways that are essential for human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and functions of motile and non-motile cilia.
Figure 2: Dysfunctions in motile and/or non-motile cilia cause ciliopathies that encompass most human organ systems.
Figure 3: Structural and functional features of motile and sensory cilia are associated with ciliopathies.
Figure 4: Ciliogenesis and ciliary compartmentalization are associated with ciliopathies.
Figure 5: Links between ciliary trafficking and ciliopathies.

Similar content being viewed by others

References

  1. Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B. & Bettencourt-Dias, M. Evolution: tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194, 165–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fisch, C. & Dupuis-Williams, P. Ultrastructure of cilia and flagella — back to the future! Biol. Cell 103, 249–270 (2011).

    Article  PubMed  Google Scholar 

  3. Nachury, M. V. How do cilia organize signalling cascades. Phil. Trans. R. Soc. Lond. B Biol. Sci. http://dx.doi.org/10.1098/rstb.2013.0465 (2014).

  4. Reiter, J. F., Blacque, O. E. & Leroux, M. R. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13, 608–618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Gonzalo, F. R. & Reiter, J. F. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol. 197, 697–709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Awata, J. et al. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714–4727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basiri, M. L. et al. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr. Biol. 24, 2622–2631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2012).

    Article  CAS  Google Scholar 

  9. Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011). Molecular evidence that transition zone proteins act as a diffusion barrier that controls ciliary membrane composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011). Description of two modules (MKS and NPHP) that consist of transition zone-localized ciliopathy proteins that form a ciliary gate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin, Y. C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Najafi, M., Maza, N. A. & Calvert, P. D. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc. Natl Acad. Sci. USA 109, 203–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Tokuyasu, K. & Yamada, E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J. Biophys. Biochem. Cytol. 6, 225–230 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mourão, A., Christensen, S. T. & Lorentzen, E. The intraflagellar transport machinery in ciliary signaling. Curr. Opin. Struct. Biol. 41, 98–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Bhogaraju, S. et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009–1012 (2013). Mechanistic basis of how the IFT system transports a key ciliary component, tubulin, which is required for ciliogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sung, C. H. & Leroux, M. R. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat. Cell Biol. 15, 1387–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, C. & Malicki, J. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J. 30, 2532–2544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horani, A., Ferkol, T. W., Dutcher, S. K. & Brody, S. L. Genetics and biology of primary ciliary dyskinesia. Paediatr. Respir. Rev. 18, 18–24 (2016).

    PubMed  Google Scholar 

  21. Dasgupta, A. & Amack, J. D. Cilia in vertebrate left-right patterning. Phil. Trans. R. Soc. Lond. B Biol. Sci. http://dx.doi.org/10.1098/rstb.2015.0410 (2016).

  22. Mitchison, H. M. et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 44, 381–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tarkar, A. et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45, 995–1003 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Omran, H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611–616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bloodgood, R. A. Sensory reception is an attribute of both primary cilia and motile cilia. J. Cell Sci. 123, 505–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Wheway, G., Parry, D. A. & Johnson, C. A. The role of primary cilia in the development and disease of the retina. Organogenesis 10, 69–85 (2014).

    Article  PubMed  Google Scholar 

  27. McEwen, D. P., Jenkins, P. M. & Martens, J. R. Olfactory cilia: our direct neuronal connection to the external world. Curr. Top. Dev. Biol. 85, 333–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Schou, K. B., Pedersen, L. B. & Christensen, S. T. Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16, 1099–1113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozgül, R. K. et al. Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am. J. Hum. Genet. 89, 253–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas, S. et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 35, 137–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishimura, D. Y. et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc. Natl Acad. Sci. USA 101, 16588–16593 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, H. et al. Mistrafficking of prenylated proteins causes retinitis pigmentosa 2. FASEB J. 29, 932–942 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Kunte, M. M. et al. ER stress is involved in T17M rhodopsin-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. 53, 3792–3800 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jenkins, P. M., McEwen, D. P. & Martens, J. R. Olfactory cilia: linking sensory cilia function and human disease. Chem. Senses 34, 451–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kulaga, H. M. et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat. Genet. 36, 994–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. McEwen, D. P. et al. Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc. Natl Acad. Sci. USA 104, 15917–15922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Briscoe, J. & Thérond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005). Functional connection between cilia and the Hedgehog signalling pathway, which is essential for development and is central to several ciliopathies.

    Article  CAS  PubMed  Google Scholar 

  40. Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santos, N. & Reiter, J. F. A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J. Cell Sci. 127, 1500–1510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Q., Yu, D., Seo, S., Stone, E. M. & Sheffield, V. C. Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable Bardet–Biedl syndrome protein complex, the BBSome. J. Biol. Chem. 287, 20625–20635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caparrós-Martín, J. A. et al. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum. Mol. Genet. 22, 124–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Ruiz-Perez, V. L. & Goodship, J. A. Ellis-van Creveld syndrome and Weyers acrodental dysostosis are caused by cilia-mediated diminished response to hedgehog ligands. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 341–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez, G. M. et al. Hedgehog signaling regulates the ciliary transport of odorant receptors in Drosophila. Cell Rep. 14, 464–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Bijlsma, M. F., Damhofer, H. & Roelink, H. Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium. Sci. Signal. 5, ra60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choksi, S. P., Lauter, G., Swoboda, P. & Roy, S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 141, 1427–1441 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Swoboda, P., Adler, H. T. & Thomas, J. H. The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol. Cell 5, 411–421 (2000). Evidence for an RFX transcription factor being required for the expression of ciliary genes and ciliogenesis.

    Article  CAS  PubMed  Google Scholar 

  50. Chung, M. I. et al. RFX2 is broadly required for ciliogenesis during vertebrate development. Dev. Biol. 363, 155–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Bonnafe, E. et al. The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol. Cell. Biol. 24, 4417–4427 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. El Zein, L. et al. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J. Cell Sci. 122, 3180–3189 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ashique, A. M. et al. The Rfx4 transcription factor modulates Shh signaling by regional control of ciliogenesis. Sci. Signal. 2, ra70 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Manojlovic, Z., Earwood, R., Kato, A., Stefanovic, B. & Kato, Y. RFX7 is required for the formation of cilia in the neural tube. Mech. Dev. 132, 28–37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dubruille, R. et al. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 129, 5487–5498 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Blacque, O. E. et al. Functional genomics of the cilium, a sensory organelle. Curr. Biol. 15, 935–941 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. You, Y. et al. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L650–L657 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, S. et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Kyrousi, C. et al. Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 142, 3661–3674 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Beckers, A., Alten, L., Viebahn, C., Andre, P. & Gossler, A. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc. Natl Acad. Sci. USA 104, 15765–15770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swaroop, A. et al. Leber congenital amaurosis caused by a homozygous mutation (R90W) in the homeodomain of the retinal transcription factor CRX: direct evidence for the involvement of CRX in the development of photoreceptor function. Hum. Mol. Genet. 8, 299–305 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Nemajerova, A. et al. TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev. 30, 1300–1312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boon, M. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 5, 4418 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Wallmeier, J. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 46, 646–651 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Mazelova, J. et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 28, 183–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Knödler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA 107, 6346–6351 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lu, Q. et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17, 228–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rogers, K. K. et al. The exocyst localizes to the primary cilium in MDCK cells. Biochem. Biophys. Res. Commun. 319, 138–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Zuo, X., Guo, W. & Lipschutz, J. H. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol. Biol. Cell 20, 2522–2529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Joo, K. et al. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc. Natl Acad. Sci. USA 110, 5987–5992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmidt, K. N. et al. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199, 1083–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tanos, B. E. et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27, 163–168 (2013). A breakthrough study that identified the role of several distal appendage proteins, CEP89, CEP83, SCLT1 and FBF1, in an early stage of ciliogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Failler, M. et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am. J. Hum. Genet. 94, 905–914 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150, 533–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adly, N., Alhashem, A., Ammari, A. & Alkuraya, F. S. Ciliary genes TBC1D32/C6orf170 and SCLT1 are mutated in patients with OFD type IX. Hum. Mutat. 35, 36–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Mee, L. et al. Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1. Hum. Mol. Genet. 14, 1475–1488 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Oka, M. et al. A novel HYLS1 homozygous mutation in living siblings with Joubert syndrome. Clin. Genet. 89, 739–743 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Dammermann, A. et al. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev. 23, 2046–2059 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferrante, M. I. et al. Identification of the gene for oral-facial-digital type I syndrome. Am. J. Hum. Genet. 68, 569–576 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Webb, T. R. et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum. Mol. Genet. 21, 3647–3654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Coene, K. L. et al. OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. Am. J. Hum. Genet. 85, 465–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thauvin-Robinet, C. et al. The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nat. Genet. 46, 905–911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alby, C. et al. Mutations in KIAA0586 cause lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly syndrome. Am. J. Hum. Genet. 97, 311–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lopes, C. A. et al. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J. Cell Sci. 124, 600–612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ye, X., Zeng, H., Ning, G., Reiter, J. F. & Liu, A. C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc. Natl Acad. Sci. USA 111, 2164–2169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kobayashi, T., Kim, S., Lin, Y. C., Inoue, T. & Dynlacht, B. D. The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J. Cell Biol. 204, 215–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hori, A. & Toda, T. Regulation of centriolar satellite integrity and its physiology. Cell. Mol. Life Sci. 74, 213–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, J. Y. & Stearns, T. FOP is a centriolar satellite protein involved in ciliogenesis. PLoS ONE 8, e58589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Silva, E. et al. Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol. Biol. Cell 27, 48–63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Insolera, R., Bazzi, H., Shao, W., Anderson, K. V. & Shi, S. H. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci. 17, 1528–1535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, L., Hou, S. & Han, Y. G. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat. Neurosci. 19, 888–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kodani, A. et al. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 4, e07519 (2015).

    Article  PubMed Central  Google Scholar 

  95. Kilburn, C. L. et al. New tetrahymena basal body protein components identify basal body domain structure. J. Cell Biol. 178, 905–912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, J. B. et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, Q. et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics 6, 1299–1317 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Gupta, G. D. et al. A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163, 1484–1499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roberson, E. C. et al. TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J. Cell Biol. 209, 129–142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, L. et al. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am. J. Hum. Genet. 89, 713–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, L. & Lipschutz, J. H. Cilia and polycystic kidney disease, kith and kin. Birth Defects Res. C Embryo Today 102, 174–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Valente, E. M. et al. Distinguishing the four genetic causes of Jouberts syndrome-related disorders. Ann. Neurol. 57, 513–519 (2005).

    Article  PubMed  Google Scholar 

  105. Leitch, C. C. et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat. Genet. 40, 443–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Yee, L. E. et al. Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLoS Genet. 11, e1005627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Katsanis, N. et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Hoefele, J. et al. Evidence of oligogenic inheritance in nephronophthisis. J. Am. Soc. Nephrol. 18, 2789–2795 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Wright, K. J. et al. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev. 25, 2347–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Srour, M. et al. Mutations in TMEM231 cause Joubert syndrome in French Canadians. J. Med. Genet. 49, 636–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Damerla, R. R. et al. Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies. Hum. Mol. Genet. 24, 3994–4005 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lambacher, N. J. et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bhogaraju, S., Engel, B. D. & Lorentzen, E. Intraflagellar transport complex structure and cargo interactions. Cilia 2, 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bangs, F. & Anderson, K. V. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gilissen, C. et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet. 87, 418–423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arts, H. H. et al. C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J. Med. Genet. 48, 390–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Ashe, A. et al. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Hum. Mol. Genet. 21, 1808–1823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schmidts, M. et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum. Mutat. 34, 714–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schmidts, M. et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J. Med. Genet. 50, 309–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Schmidts, M. et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am. J. Hum. Genet. 93, 932–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Taylor, S. P. et al. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat. Commun. 6, 7092 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Gholkar, A. A. et al. Tctex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis. Cell Cycle 14, 1116–1125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moosa, S. et al. Novel IFT122 mutations in three Argentinian patients with cranioectodermal dysplasia: expanding the mutational spectrum. Am. J. Med. Genet. A 170A, 1295–1301 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Davis, E. E. et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet. 43, 189–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Coussa, R. G. et al. WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clin. Genet. 84, 150–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Halbritter, J. et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93, 915–925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Friedland-Little, J. M. et al. A novel murine allele of intraflagellar transport protein 172 causes a syndrome including VACTERL-like features with hydrocephalus. Hum. Mol. Genet. 20, 3725–3737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beales, P. L. et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet. 39, 727–729 (2007). First association between intraflagellar transport and a human disease, involving skeletal development anomalies.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, W. et al. IFT52 mutations destabilize anterograde complex assembly, disrupt ciliogenesis and result in short rib polydactyly syndrome. Hum. Mol. Genet. 25, 4012–4020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thevenon, J. et al. Autosomal recessive IFT57 hypomorphic mutation cause ciliary transport defect in unclassified oral-facial-digital syndrome with short stature and brachymesophalangia. Clin. Genet. 90, 509–517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mukhopadhyay, S. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180–2193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Seo, S. et al. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet. 7, e1002358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Eguether, T. et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev. Cell 31, 279–290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Marion, V. et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet—Biedl syndrome with situs inversus and insertional polydactyly. J. Med. Genet. 49, 317–321 (2012).

    Article  PubMed  Google Scholar 

  137. Aldahmesh, M. A. et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum. Mol. Genet. 23, 3307–3315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, M. S. et al. IFT46 plays an essential role in cilia development. Dev. Biol. 400, 248–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000). First demonstration that an intraflagellar protein that is implicated in a human disease (polycystic kidney disease) was required for the formation of cilia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, Y. et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521, 520–524 (2015). A large-scale screen in the mouse revealed that numerous ciliary and ciliopathy proteins are associated with congenital heart disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Koefoed, K., Veland, I. R., Pedersen, L. B., Larsen, L. A. & Christensen, S. T. Cilia and coordination of signaling networks during heart development. Organogenesis 10, 108–125 (2014).

    Article  PubMed  Google Scholar 

  142. Harrison, M. J., Shapiro, A. J. & Kennedy, M. P. Congenital heart disease and primary ciliary dyskinesia. Paediatr. Respir. Rev. 18, 25–32 (2016).

    PubMed  Google Scholar 

  143. Liew, G. M. et al. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev. Cell 31, 265–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Domire, J. S. et al. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell. Mol. Life Sci. 68, 2951–2960 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. & Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl Acad. Sci. USA 105, 4242–4246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, Q., Seo, S., Bugge, K., Stone, E. M. & Sheffield, V. C. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum. Mol. Genet. 21, 1945–1953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Seo, S. et al. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 18, 1323–1331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Loktev, A. V. & Jackson, P. K. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. van Dam, T. J. et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc. Natl Acad. Sci. USA 110, 6943–6948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Avidor-Reiss, T. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Stone, E. M. et al. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene. Invest. Ophthalmol. Vis. Sci. 52, 9665–9673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Paige Taylor, S. et al. An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum. Mol. Genet. 25, 3998–4011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Thiel, C. et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am. J. Hum. Genet. 88, 106–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Toriyama, M. et al. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat. Genet. 48, 648–656 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Boskovski, M. T. et al. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 504, 456–459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mitchell, D. R. The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Adv. Exp. Med. Biol. 607, 130–140 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Suzuki, T. et al. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Hum. Mol. Genet. 18, 1099–1109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Loucks, C. M. et al. PACRG, a protein linked to ciliary motility, mediates cellular signaling. Mol. Biol. Cell 27, 2133–2144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rossetto, M. G. et al. Defhc1.1, a homologue of the juvenile myoclonic gene EFHC1, modulates architecture and basal activity of the neuromuscular junction in Drosophila. Hum. Mol. Genet. 20, 4248–4257 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Léon, C. et al. Distribution of EFHC1 or Myoclonin 1 in mouse neural structures. Epilepsy Res. 88, 196–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Follit, J. A., Tuft, R. A., Fogarty, K. E. & Pazour, G. J. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781–3792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Finetti, F. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stinchcombe, J. C. et al. Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis. Curr. Biol. 25, 3239–3244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Onnis, A. et al. The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death Differ. 22, 1687–1699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cooley, L. F. et al. Impaired immunological synapse in sperm associated antigen 6 (SPAG6) deficient mice. Sci. Rep. 6, 25840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Noda, K., Kitami, M., Kitami, K., Kaku, M. & Komatsu, Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc. Natl Acad. Sci. USA 113, E2589–E2597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Arnaiz, O., Cohen, J., Tassin, A. M. & Koll, F. Remodeling Cildb, a popular database for cilia and links for ciliopathies. Cilia 3, 9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pazour, G. J., Agrin, N., Leszyk, J. & Witman, G. B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ishikawa, H., Thompson, J., Yates, J. R. & Marshall, W. F. Proteomic analysis of mammalian primary cilia. Curr. Biol. 22, 414–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Phirke, P. et al. Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Dev. Biol. 357, 235–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jensen, V. L. et al. Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genet. 12, e1006469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, C. et al. MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol. 14, e1002416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vogel, P. et al. Nephronophthisis and retinal degeneration in tmem218−/− mice: a novel mouse model for Senior-Løken syndrome. Vet. Pathol. 52, 580–595 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Boldt, K. et al. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat. Commun. 7, 11491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Timbers, T. A. et al. Accelerating gene discovery by phenotyping whole-genome sequenced multi-mutation strains and using the sequence kernel association test (SKAT). PLoS Genet. 12, e1006235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wheway, G. et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 17, 1074–1087 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Baker, K. & Beales, P. L. Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281–295 (2009). An outstanding review article, which compiles all known and potential ciliopathies based on phenotypic presentations.

    Article  CAS  PubMed  Google Scholar 

  178. Oud, M. M. et al. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia 5, 8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Putoux, A. et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat. Genet. 43, 601–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Broekhuis, J. R., Verhey, K. J. & Jansen, G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS ONE 9, e108470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Miyamoto, T. et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum. Mol. Genet. 20, 2058–2070 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Foley, K. E. Model network: Canadian program aims to generate models for rare disease. Nat. Med. 21, 1242–1243 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Cornillie, F. J., Lauweryns, J. M. & Corbeel, L. Atypical bronchial cilia in children with recurrent respiratory tract infections. A comparative ultrastructural study. Pathol. Res. Pract. 178, 595–604 (1984).

    Article  CAS  PubMed  Google Scholar 

  184. Inglis, P. N., Boroevich, K. A. & Leroux, M. R. Piecing together a ciliome. Trends Genet. 22, 491–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Valente, E. M. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623–625 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Song, R. et al. miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510, 115–120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mougou-Zerelli, S. et al. CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation. Hum. Mutat. 30, 1574–1582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Maglic, D. et al. TMEM231 gene conversion associated with Joubert and Meckel-Gruber syndromes in the same family. Hum. Mutat. 37, 1144–1148 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Bujakowska, K. M. et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum. Mol. Genet. 24, 230–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Sayer, J. A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Baala, L. et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am. J. Hum. Genet. 81, 170–179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Perrault, I. et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum. Mutat. 28, 416 (2007).

    Article  PubMed  Google Scholar 

  194. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Klinger, M. et al. The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol. Biol. Cell 25, 495–507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Pretorius, P. R. et al. Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform. PLoS Genet. 6, e1000884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Doherty, D. et al. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J. Med. Genet. 47, 8–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Delous, M. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Dryja, T. P. et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am. J. Hum. Genet. 68, 1295–1298 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hameed, A. et al. Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. J. Med. Genet. 40, 616–619 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize for not citing numerous important studies that are relevant to this vast and growing area of biology owing to space restrictions. Funding for this work was provided by the Canadian Institutes of Health Research (CIHR; grants MOP142243 and MOP82870 to M.R.L.) and grants AR054396 and GM095941 from the NIH to J.F.R. M.R.L. acknowledges a senior scholar award from the Michael Smith Foundation for Health Research (MSFHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel R. Leroux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

CIlDB

FURTHER INFORMATION

RDDM

Syscilia

PowerPoint slides

Supplementary information

Supplementary Table S1

Human genes with established or likely roles in cilia, and links to established or potential ciliopathies (XLSX 86 kb)

Glossary

Mother centriole

Centriolar structure that is remodelled into a basal body before the onset of cilium formation.

Septins

Proteins that create barriers between different membrane compartments in several contexts, including possibly at the base of cilia.

Kinesin-2

Heterotrimeric molecular motor that is required for the anterograde (base-to-tip) transport of the intraflagellar transport machinery.

Dynein-2

Molecular motor that is involved in the retrograde (tip-to-base) transport of the intraflagellar transport machinery.

Unfolded protein response

Cellular stress response caused by non-native proteins, which is specific to the endoplasmic reticulum.

Imaginal discs

Collections of cells in an insect larva that develop into a specific adult structure, such as a wing or a leg.

Exocyst complex

Protein complex that is involved in targeting Golgi-derived vesicles to the plasma membrane.

Mosaicism

Two or more cell populations with different genotypes in a single individual.

Centriolar satellites

Electron-dense puncta found at the periphery of centrosomes or basal bodies. May function as a temporary hub for several proteins that are required for the proper formation and function of cilia.

Allelic series

Different mutations within a single gene that cause a range of phenotypes, from mild to more severe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, J., Leroux, M. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 18, 533–547 (2017). https://doi.org/10.1038/nrm.2017.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing