Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A positive look at double-negative thymocytes

Key Points

  • Despite advances in transgenic mouse technology, our understanding of early aspects of T-cell development from CD4CD8 double-negative progenitors in the thymus is still incomplete.

  • As a cell population, double-negative thymocytes are heterogeneous, and a consensus has not been reached on how their content of T-cell progenitors should be identified.

  • Flow cytometry is an ideal experimental approach for the study of lymphocyte development, and, with care, additional information can be obtained regarding lineage inter-relationships of cells.

  • As shown for the analysis of early B-cell development, molecular and cellular approaches at the single-cell level can be applied; similar approaches need to be carried out for the phenotypically defined T-cell progenitor subsets.

Abstract

In some respects, our understanding of the cellular and molecular aspects of early T-cell differentiation is lagging behind that of B cells. Papers describing gene-knockout and reporter-transgenic mice in which thymocyte development is affected are often difficult to interpret. Progress in this field will be hampered unless a more detailed phenotypic and molecular analysis of progenitor thymocytes at the single-cell level is carried out.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative scheme of early T- and B-cell development.
Figure 2: Preparation of double-negative thymocytes.
Figure 3: Phenotypic analysis of purified double-negative cells.

Similar content being viewed by others

References

  1. Miller, J. F. & Osoba, D. Current concepts of the immunological function of the thymus. Physiol. Rev. 47, 437–520 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Scollay, R. & Godfrey, D. I. Thymic emigration: conveyor belts or lucky dips? Immunol. Today 16, 268–274 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Wallis, V. J., Leuchars, E., Chwalinski, S. & Davies, A. J. On the sparse seeding of bone marrow and thymus in radiation chimaeras. Transplantation 19, 2–11 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceredig, R. & Schreyer, M. Immunohistochemical localization of host and donor-derived cells in the regenerating thymus of radiation bone-marrow chimeras. Thymus 6, 15–26 (1984).

    CAS  PubMed  Google Scholar 

  6. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Wilson, A., MacDonald, H. R. & Radtke, F. Notch-1-deficient common lymphoid precursors adopt a B-cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gounari, F. et al. Tracing lymphopoiesis with the aid of a pTα-controlled reporter gene. Nature Immunol. 3, 489–496 (2002).

    Article  CAS  Google Scholar 

  9. Rolink, A., Haasner, D., Nishikawa, S. & Melchers, F. Changes in frequencies of clonable pre-B cells during life in different lymphoid organs of mice. Blood 81, 2290–2300 (1993).

    CAS  PubMed  Google Scholar 

  10. Melchers, F. et al. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev. 175, 33–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kitamura, D. et al. A critical role of λ5 protein in B-cell development. Cell 69, 823–831 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Ceredig, R., Andersson, J., Melchers, F. & Rolink, A. Effect of deregulated IL-7 transgene expression on B-lymphocyte development in mice expressing mutated pre-B-cell receptors. Eur. J. Immunol. 29, 2797–2807 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ceredig, R., Dialynas, D. P., Fitch, F. W. & MacDonald, H. R. Precursors of T-cell growth-factor-producing cells in the thymus: ontogeny, frequency and quantitative recovery in a subpopulation of phenotypically mature thymocytes defined by monoclonal antibody GK-1.5. J. Exp. Med. 158, 1654–1671 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Ceredig, R., Sekaly, R. P. & MacDonald, H. R. Differentiation in vitro of Lyt2+ thymocytes from embryonic Lyt2 precursors. Nature 303, 248–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Fowlkes, B. J. & Pardoll, D. M. Molecular and cellular events of T-cell development. Adv. Immunol. 44, 207–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Bluestone, J. A., Pardoll, D., Sharrow, S. O. & Fowlkes, B. J. Characterization of murine thymocytes with CD3-associated T-cell receptor structures. Nature 326, 82–84 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Havran, W. L. & Allison, J. P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335, 443–445 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. MacDonald, H. R. Development and selection of NKT cells. Curr. Opin. Immunol. 14, 250–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Godfrey, D. I., Zlotnik, A. & Suda, T. Phenotypic and functional characterization of c-kit expression during intrathymic T-cell development. J. Immunol. 149, 2281–2285 (1992).

    CAS  PubMed  Google Scholar 

  20. Ceredig, R., Lowenthal, J. W., Nabholz, M. & MacDonald, H. R. Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature 314, 98–100 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Lesley, J., Hyman, R. & Schulte, R. Evidence that the Pgp-1 glycoprotein is expressed on thymus-homing progenitor cells of the thymus. Cell. Immunol. 91, 397–403 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Shimonkevitz, R. P., Husmann, L. A., Bevan, M. J. & Crispe, I. N. Transient expression of IL-2 receptor precedes the differentiation of immature thymocytes. Nature 329, 157–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Lowenthal, J. W., Howe, R. C., Ceredig, R. & MacDonald, H. R. Functional status of interleukin-2 receptors expressed by immature (Lyt-2/L3T4) thymocytes. J. Immunol. 137, 2579–2584 (1986).

    CAS  PubMed  Google Scholar 

  24. Shevach, E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  25. Ceredig, R. The ontogeny of B cells in the thymus of normal, CD3ɛ knockout (KO), RAG-2 KO and IL-7 transgenic mice. Int. Immunol. 14, 87–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Trowbridge, I. S., Lesley, J., Trotter, J. & Hyman, R. Thymocyte subpopulation enriched for progenitors with an unrearranged T-cell receptor β-chain gene. Nature 315, 666–669 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Gunthert, U. CD44: a multitude of isoforms with diverse functions. Curr. Top. Microbiol. Immunol. 184, 47–63 (1993).

    CAS  PubMed  Google Scholar 

  28. Lynch, F. & Ceredig, R. Mouse strain variation in Ly-24 (Pgp-1) expression by peripheral T cells and thymocytes: implications for T-cell differentiation. Eur. J. Immunol. 19, 223–229 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Schwarzler, C., Oliferenko, S. & Gunthert, U. Variant isoforms of CD44 are required in early thymocyte development. Eur. J. Immunol. 31, 2997–3005 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lesley, J., Schulte, R. & Hyman, R. Kinetics of thymus repopulation by intrathymic progenitors after intravenous injection: evidence for successive repopulation by an IL-2R+, Pgp-1 and by an IL-2R, Pgp-1+ progenitor. Cell. Immunol. 117, 378–388 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Pearse, M. et al. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 86, 1614–1618 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scollay, R. et al. Developmental status and reconstitution potential of subpopulations of murine thymocytes. Immunol. Rev. 104, 81–120 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Godfrey, D. I. & Zlotnik, A. Control points in early T-cell development. Immunol. Today 14, 547–553 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Godfrey, D. I., Kennedy, J., Mombaerts, P., Tonegawa, S. & Zlotnik, A. Onset of TCR-β gene rearrangement and role of TCR-β expression during CD3CD4CD8 thymocyte differentiation. J. Immunol. 152, 4783–4792 (1994).

    CAS  PubMed  Google Scholar 

  35. Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  36. Malissen, M. et al. Altered T-cell development in mice with a targeted mutation of the CD3-ɛ gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor-α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Moore, T. A. & Zlotnik, A. T-cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860 (1995).

    CAS  PubMed  Google Scholar 

  39. Moore, T. A., von Freeden-Jeffry, U., Murray, R. & Zlotnik, A. Inhibition of γδ T-cell development and early thymocyte maturation in IL-7−/− mice. J. Immunol. 157, 2366–2373 (1996).

    CAS  PubMed  Google Scholar 

  40. King, A. G., Kondo, M., Scherer, D. C. & Weissman, I. L. Lineage infidelity in myeloid cells with TCR gene rearrangement: a latent developmental potential of pro-T cells revealed by ectopic cytokine receptor signaling. Proc. Natl Acad. Sci. USA 99, 4508–4513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, L. et al. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349, 71–74 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem-cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Igarashi, H., Gregory, S., Yokota, T., Sakaguchi, N. & Kincade, P. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kouro, T., Medina, K. L., Oritani, K. & Kincade, P. W. Characteristics of early murine B-lymphocyte precursors and their direct sensitivity to negative regulators. Blood 97, 2708–2715 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu, C. et al. Progression of T-cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int. Immunol. 13, 105–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Germain, R. N. T-cell development and the CD4–CD8 lineage decision. Nature Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  47. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T- versus B-lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15, 225–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Miller, J. P. et al. The earliest step in B-lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin-7. J. Exp. Med. 196, 705–711 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Katsura, Y. Redefinition of lymphoid progenitors. Nature Rev. Immunol. 2, 127–132 (2002).

    Article  CAS  Google Scholar 

  52. Carlyle, J. R. et al. Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med. 186, 173–182 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pellicci, D. G. et al. A natural killer T (NKT)-cell developmental pathway involving a thymus-dependent NK1.1CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y. & Yokota, Y. Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc. Natl Acad. Sci. USA 98, 5164–5169 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, C. K. et al. Generation of macrophages from early T progenitors in vitro. J. Immunol. 166, 5964–5969 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Rodewald, H. R., Brocker, T. & Haller, C. Developmental dissociation of thymic dendritic cell and thymocyte lineages revealed in growth factor receptor mutant mice. Proc. Natl Acad. Sci. USA 96, 15068–15073 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Di Santo, J. P. et al. The common cytokine receptor γ-chain and the pre-T-cell receptor provide independent but critically overlapping signals in early αβ T-cell development. J. Exp. Med. 189, 563–574 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Petrie, H. T., Tourigny, M., Burtrum, D. B. & Livak, F. Precursor thymocyte proliferation and differentiation are controlled by signals unrelated to the pre-TCR. J. Immunol. 165, 3094–3098 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Wilson, A., Capone, M. & MacDonald, H. R. Unexpectedly late expression of intracellular CD3ɛ and TCR γδ proteins during adult thymus development. Int. Immunol. 11, 1641–1650 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Matsuda, J. L. et al. Homeostasis of Vα14i NK T cells. Nature Immunol. 3, 966–974 (2002).

    Article  CAS  Google Scholar 

  63. von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T-lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell-cycle progression. Immunity 7, 147–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Rodewald, H. R., Ogawa, M., Haller, C., Waskow, C. & DiSanto, J. P. Pro-thymocyte expansion by c-kit and the common cytokine receptor γ-chain is essential for repertoire formation. Immunity 6, 265–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Mertsching, E., Burdet, C. & Ceredig, R. IL-7-transgenic mice: analysis of the role of IL-7 in the differentiation of thymocytes in vivo and in vitro. Int. Immunol. 7, 401–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Kang, J., Volkmann, A. & Raulet, D. H. Evidence that γδ versus αβ T-cell fate determination is initiated independently of T-cell receptor signaling. J. Exp. Med. 193, 689–698 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Durum, S. K. et al. Interleukin-7 receptor control of T-cell receptor-γ gene rearrangement: role of receptor-associated chains and locus accessibility. J. Exp. Med. 188, 2233–2241 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Young, F. et al. Influence of immunoglobulin heavy- and light-chain expression on B-cell differentiation. Genes Dev. 8, 1043–1057 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Erman, B., Feigenbaum, L., Coligan, J. E. & Singer, A. Early TCRα expression generates TCRαγ complexes that signal the DN-to-DP transition and impair development. Nature Immunol. 3, 564–569 (2002).

    Article  CAS  Google Scholar 

  70. van Ewijk, W. et al. Thymic microenvironments, 3-D versus 2-D? Semin. Immunol. 11, 57–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Anderson, M., Anderson, S. K. & Farr, A. G. Thymic vasculature: organizer of the medullary epithelial compartment? Int. Immunol. 12, 1105–1110 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Suniara, R. K., Jenkinson, E. J. & Owen, J. J. Studies on the phenotype of migrant thymic stem cells. Eur. J. Immunol. 29, 75–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Ceredig, R., Lynch, F. & Newman, P. Phenotypic properties, interleukin-2 production and developmental origin of a 'mature' subpopulation of Lyt-2L3T4 mouse thymocytes. Proc. Natl Acad. Sci. USA 84, 8578–8582 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ceredig, R. Differentiation potential of 14-day fetal mouse thymocytes in organ culture. Analysis of CD4/CD8-defined single-positive and double-negative cells. J. Immunol. 141, 355–362 (1988).

    CAS  PubMed  Google Scholar 

  75. Anderson, G. & Jenkinson, E. J. Lymphostromal interactions in thymic development and function. Nature Rev. Immunol. 1, 31–40 (2001).

    Article  CAS  Google Scholar 

  76. Potocnik, A. J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen and bone marrow. Immunity 12, 653–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Gill, J., Malin, M., Hollander, G. A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nature Immunol. 3, 635–642 (2002).

    Article  CAS  Google Scholar 

  78. Kadish, J. L. & Basch, R. S. Thymic regeneration after lethal irradiation: evidence for an intra-thymic radioresistant T-cell precursor. J. Immunol. 114, 452–458 (1975).

    CAS  PubMed  Google Scholar 

  79. Mulder, A. H., Visser, J. W. & van den Engh, G. J. Thymus regeneration by bone marrow cell suspensions differing in the potential to form early and late spleen colonies. Exp. Hematol. 13, 768–775 (1985).

    CAS  PubMed  Google Scholar 

  80. Lancrin, C. et al. Major T-cell progenitor activity in bone-marrow-derived spleen colonies. J. Exp. Med. 195, 919–929 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mori, S., Shortman, K. & Wu, L. Characterization of thymus-seeding precursor cells from mouse bone marrow. Blood 98, 696–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Norment, A. M. & Bevan, M. J. Role of chemokines in thymocyte development. Semin. Immunol. 12, 445–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Georgopoulos, K., Winandy, S. & Avitahl, N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol. 15, 155–176 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374, 70–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Crompton, T., Outram, S. V., Buckland, J. & Owen, M. J. Distinct roles of the interleukin-7 receptor α-chain in fetal and adult thymocyte development revealed by analysis of interleukin-7 receptor-α-deficient mice. Eur. J. Immunol. 28, 1859–1866 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Mebius, R. E. et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3 cells, as well as macrophages. J. Immunol. 166, 6593–6601 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Igarashi, H., Kouro, T., Yokota, T., Comp, P. C. & Kincade, P. W. Age and stage dependency of estrogen-receptor expression by lymphocyte precursors. Proc. Natl Acad. Sci. USA 98, 15131–15136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rodewald, H. R. & Fehling, H. J. Molecular and cellular events in early thymocyte development. Adv. Immunol. 69, 1–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Foss, D. L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Foss, D. L., Donskoy, E. & Goldschneider, I. Functional demonstration of intrathymic binding sites and microvascular gates for prothymocytes in irradiated mice. Int. Immunol. 14, 331–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Dudley, E. C., Petrie, H. T., Shah, L. M., Owen, M. J. & Hayday, A. C. T-cell receptor β-chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Burtrum, D. B., Kim, S., Dudley, E. C., Hayday, A. C. & Petrie, H. T. TCR gene recombination and αβ–γδ lineage divergence: productive TCR-β rearrangement is neither exclusive nor preclusive of γδ cell development. J. Immunol. 157, 4293–4296 (1996).

    CAS  PubMed  Google Scholar 

  93. Livak, F., Tourigny, M., Schatz, D. G. & Petrie, H. T. Characterization of TCR gene rearrangements during adult murine T-cell development. J. Immunol. 162, 2575–2580 (1999).

    CAS  PubMed  Google Scholar 

  94. Capone, M., Hockett, R. D. Jr & Zlotnik, A. Kinetics of T-cell receptor β, γ and δ rearrangements during adult thymic development: T-cell receptor rearrangements are present in CD44+CD25+ pro-T thymocytes. Proc. Natl Acad. Sci. USA 95, 12522–12527 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hoffman, E. S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Fehling, H. J., Gilfillan, S. & Ceredig, R. αβ/γδ lineage commitment in the thymus of normal and genetically manipulated mice. Adv. Immunol. 71, 1–76 (1999).

    CAS  PubMed  Google Scholar 

  97. Gallagher, M. et al. Use of TCR ADV gene segments by the δ-chain is independent of their position and of CD3 expression. Eur. J. Immunol. 28, 3878–3885 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Mertsching, E., Wilson, A., MacDonald, H. R. & Ceredig, R. T-cell receptor α gene rearrangement and transcription in adult thymic γδ cells. Eur. J. Immunol. 27, 389–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Mancini, S. J. et al. TCRA gene rearrangement in immature thymocytes in absence of CD3, pre-TCR and TCR signaling. J. Immunol. 167, 4485–4493 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9, 117–125 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clevers, H. C. & Owen, M. J. Towards a molecular understanding of T-cell differentiation. Immunol. Today 12, 86–92 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. Rolink, A. G., Schaniel, C., Busslinger, M., Nutt, S. L. & Melchers, F. Fidelity and infidelity in commitment to B-lymphocyte lineage development. Immunol. Rev. 175, 104–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Schaniel, C., Bruno, L., Melchers, F. & Rolink, A. G. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-BI-cell clones. Blood 99, 472–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Baur, N., Nerz, G., Nil, A. & Eichmann, K. Expression and selection of productively rearranged TCRβ VDJ genes are sequentially regulated by CD3 signaling in the development of NK1.1+ αβ T cells. Int. Immunol. 13, 1031–1042 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Petersson, K. et al. A pTα-negative subpopulation of CD25+ TN thymocytes revealed by a transgenic marker. Scand. J. Immunol. 55, 119–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Wilson, A., Marechal, C. & MacDonald, H. R. Biased Vβ usage in immature thymocytes is independent of DJβ proximity and pTα pairing. J. Immunol. 166, 51–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Chase, E. S. & Hoffman, R. A. Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity. Cytometry 33, 267–279 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Walker, F., Nicola, N. A., Metcalf, D. & Burgess, A. W. Hierarchical down-modulation of hemopoietic growth-factor receptors. Cell 43, 269–276 (1985).

    Article  CAS  PubMed  Google Scholar 

  109. Mertsching, E. & Ceredig, R. T-cell receptor-γδ-expressing fetal mouse thymocytes are generated without T-cell receptor Vβ selection. Eur. J. Immunol. 26, 804–810 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Bruno, L., Scheffold, A., Radbruch, A. & Owen, M. J. Threshold of pre-T-cell-receptor surface expression is associated with αβ T-cell lineage commitment. Curr. Biol. 9, 559–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Kollias, G. et al. Differential regulation of a Thy-1 gene in transgenic mice. Proc. Natl Acad. Sci. USA 84, 1492–1496 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte–stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Brown, G., Bunce, C. M. & Guy, G. R. Sequential determination of lineage potentials during haemopoiesis. Br. J. Cancer 52, 681–695 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.C. thanks INSERM, in particular P. Marche, for support. Apologies to all colleagues whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod Ceredig.

Related links

Related links

DATABASES

LocusLink

B220

Bcl-2

CD3ɛ

CD4

CD8

CD11b

CD11c

CD19

CD24

CD25

CD43

CD44

CD62L

CD90

CD117

CD122

CD127

Flt3

Ikaros

IL-2

IL-2Rα

IL-7

IL-7R

lunatic fringe

NK1.1

Notch

Pax

Pax5

Rag1

SCF

Tcf1

λ5

Swiss-Prot

GFP

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceredig, R., Rolink, T. A positive look at double-negative thymocytes. Nat Rev Immunol 2, 888–897 (2002). https://doi.org/10.1038/nri937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing