Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokines and autoimmunity

Key Points

  • Cytokines have essential roles in immune cell development, immunoregulation and immune effector functions.

  • Cytokines such as interleukin (IL)-2, tumour-necrosis factor (TNF) and the interferons are well known to have immunostimulatory and pro-inflammatory actions. However, the same cytokines also have unexpected, but essential, immunosuppressive actions.

  • IL-2 has essential functions in constraining lymphocyte growth by promoting apoptosis. Regulatory T cells that express the IL-2 receptor γ-chain have also been intensively studied. Deficiency of these cells can result in autoimmunity, but the exact role of IL-2 in the physiology of these cells is unknown.

  • Despite TNF's role as the prototypic cytokine that mediates proinflammatory responses, it is now clear that its in vivo role is complex. Experimental models of disease show that immune-mediated disease, including arthritis, can occur in the absence of TNF. Models of diabetes have shown that TNF can worsen or improve disease, depending on the timing and duration of exposure to this cytokine.

  • Interferons have essential functions in host defence and promote cell-mediated immunity. Type 1 interferons, in particular, have been used to treat autoimmune diseases, including those characterized by T-helper (TH)1-mediated pathology. Type 1 interferons can inhibit secretion of IL-12 and inhibit its action. Type 2 interferon (interferon-γ) and other cytokines upregulate the expression of a class of feedback inhibitors known as suppressors of cytokine signalling (SOCS). Mice deficient in Socs1 have fatal, interferon-dependent, inflammatory disease.

Abstract

Cytokines have crucial functions in the development, differentiation and regulation of immune cells. As a result, dysregulation of cytokine production or action is thought to have a central role in the development of autoimmunity and autoimmune disease. Some cytokines, such as interleukin-2, tumour-necrosis factor and interferons — ostensibly, the 'bad guys' in terms of disease pathogenesis — are well known for the promotion of immune and inflammatory responses. However, these cytokines also have crucial immunosuppressive functions and so, paradoxically, can also be 'good guys'. The balance between the pro-inflammatory and immunosuppressive functions of these well-known cytokines and the implications for the pathogenesis of autoimmune disease is the focus of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokines and helper T-cell differentiation.
Figure 2: Summary of the immunostimulatory and immunosuppressive effects of IL-2.
Figure 3: Summary of immunosuppressive effects of TNF, the prototypic pro-inflammatory cytokine.
Figure 4: Cytokines in autoimmunity — good guys and bad guys switch sides!

Similar content being viewed by others

References

  1. Davidson, A. & Diamond, B. Autoimmune diseases. N. Engl. J. Med. 345, 340–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Marrack, P., Kappler, J. & Kotzin, B. L. Autoimmune disease: why and where it occurs. Nature Med. 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Falcone, M. & Sarvetnick, N. Cytokines that regulate autoimmune responses. Curr. Opin. Immunol. 11, 670–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ioannou, Y. & Isenberg, D. A. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum. 43, 1431–1442 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Glimcher, L. H. & Murphy, K. M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  6. Gadina, M. et al. Signaling by type I and II cytokine receptors: ten years after. Curr. Opin. Immunol. 13, 363–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Rozzo, S. J. et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 15, 435–443 (2001). A very recent and exciting development in the field of autoimmunity. Extensive efforts to map genes associated with autoimmune disease are beginning to pay off, but raise new mechanistic questions.

    Article  CAS  PubMed  Google Scholar 

  8. Morahan, G. et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nature Genet. 27, 218–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Akira, S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 19, 2607–2611 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Stene, L. C. & Nafstad, P. Relation between occurrence of type 1 diabetes and asthma. Lancet 357, 607–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Horak, I., Lohler, J., Ma, A. & Smith, K. A. Interleukin-2 deficient mice: a new model to study autoimmunity and self-tolerance. Immunol. Rev. 148, 35–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Refaeli, Y., Van, P. L. & Abbas, A. K. Genetic models of abnormal apoptosis in lymphocytes. Immunol. Rev. 169, 273–282 (1999). An excellent review that includes detailed discussion of how IL-2 can promote apoptosis.

    Article  CAS  PubMed  Google Scholar 

  13. Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991). A landmark paper demonstrating the counterintuitive effects of IL-2.

    Article  CAS  PubMed  Google Scholar 

  14. Bleesing, J. J., Straus, S. E. & Fleisher, T. A. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr. Clin. North. Am. 47, 1291–1310 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000). A review of CD25+ regulatory by a founder of the field.

    Article  CAS  PubMed  Google Scholar 

  18. Shevach, E. M. Suppressor T cells: rebirth, function and homeostasis. Curr. Biol. 10, R572–R575 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wolf, M., Schimpl, A. & Hunig, T. Control of T cell hyperactivation in IL-2-deficient mice by CD4+CD25 and CD4+CD25+ T cells: evidence for two distinct regulatory mechanisms. Eur. J. Immunol. 6, 1637–1645 (2001). | PubMed |

    Article  Google Scholar 

  20. Suzuki, H., Zhou, Y. W., Kato, M., Mak, T. W. & Nakashima, I. Normal regulatory α/β T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor β in vivo. J. Exp. Med. 190, 1561–1572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oosterwegel, M. A., Greenwald, R. J., Mandelbrot, D. A., Lorsbach, R. B. & Sharpe, A. H. CTLA-4 and T cell activation. Curr. Opin. Immunol. 11, 294–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Skapenko, A., Lipsky, P. E., Kraetsch, H. G., Kalden, J. R. & Schulze-Koops, H. Antigen-independent TH2 cell differentiation by stimulation of CD28: regulation via IL-4 gene expression and mitogen-activated protein kinase activation. J. Immunol. 166, 4283–4292 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nature Genet. 29, 19–20 (2001). References 23–25 are breakthroughs in the identification of a gene associated with a relatively common human autoimmune disease, Crohn's disease. Curiously, mutations of the same gene can also be associated with a very different autoimmune disease with distinct pathological features. But what, if any, is the connection with the colitis observed in IL-2 deficient mice?

    Article  CAS  PubMed  Google Scholar 

  26. Kollias, G., Douni, E., Kassiotis, G. & Kontoyiannis, D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis 58 (Suppl 1), 132–139 (1999). | PubMed |

    Google Scholar 

  27. Owens, T., Wekerle, H. & Antel, J. Genetic models for CNS inflammation. Nature Med. 7, 161–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Campbell, I. K., O'Donnell, K., Lawlor, K. E. & Wicks, I. P. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J. Clin. Invest. 107, 1519–1527 (2001). A provocative recent study using a model of arthritis in which TNF-dependent pathology is a prominent feature, which shows that inflammation and, interestingly, adenopathy occurred in the absence of TNF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green, E. A. & Flavell, R. A. The initiation of autoimmune diabetes. Curr. Opin. Immunol. 11, 663–669 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Green, E. A. & Flavell, R. A. The temporal importance of TNFα expression in the development of diabetes. Immunity 12, 459–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Christen, U. et al. A dual role for TNF-α in type 1 diabetes: islet-specific expression abrogates the ongoing autoimmune process when induced late but not early during pathogenesis. J. Immunol. 166, 7023–7032 (2001). References 30 and 31 are vivid examples that the timing and duration of exposure to TNF might make a big difference.

    Article  CAS  PubMed  Google Scholar 

  32. Cope, A. P. Regulation of autoimmunity by proinflammatory cytokines. Curr. Opin. Immunol. 10, 669–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Lauer, G. M. & Walker, B. D. Hepatitis C virus infection. N. Engl. J. Med. 345, 41–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Holland, S. M. Immunotherapy of mycobacterial infections. Semin. Respir. Infect. 16, 47–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Karp, C. L., van Boxel-Dezaire, A. H., Byrnes, A. A. & Nagelkerken, L. Interferon-β in multiple sclerosis: altering the balance of interleukin-12 and interleukin-10? Curr. Opin. Neurol. 14, 361–368 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. O'Shea, J. J. & Visconti, R. Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nature Immunol. 1, 17–19 (2000).

    Article  CAS  Google Scholar 

  37. Biron, C. A. Interferons α and β as immune regulators — a new look. Immunity 14, 661–664 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Levings, M. K. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lighvani, A. A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA (in the press).

  40. Matthys, P., Vermeire, K. & Billiau, A. Mac-1+ myelopoiesis induced by CFA: a clue to the paradoxical effects of IFN-γ in autoimmune disease models. Trends Immunol. 22, 367–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Roifman, C. M. Human IL-2 receptor α chain deficiency. Pediatr. Res. 48, 6–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Grunebaum, E., Zhang, J., Dadi, H. & Roifman, C. M. Haemophagocytic lymphohistiocytosis in X-linked severe combined immunodeficiency. Br. J. Haematol. 108, 834–837 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Frucht, D. M. et al. Unexpected and variable phenotypes in a family with JAK3 deficiency. Genes Immun. (in the press).

  44. Moriggl, R. et al. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10, 249–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Crispin, J. C. & Alcocer-Varela, J. Interleukin-2 and systemic lupus erythematosus — fifteen years later. Lupus 7, 214–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Podolin, P. L. et al. Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12, 477–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Todd, J. A. & Wicker, L. S. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 15, 387–395 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Diamond, M. Lenardo, P. Plotz and W. Strober for reading this manuscript and providing helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. O'Shea.

Related links

Related links

DATABASES

LocusLink

APAF1

caspase-9

CD28

CD80

CD86

CD95

CD152

CD178

FADD

FLIP

γc

Ifi202

IFN-α

IFN-β

IFN-γ

IL-1

IL-2

IL-2R

IL-4

IL-6

IL-7

IL-9

IL-10

IL-12

Il-12p40

IL-15

IL-21

lymphotoxin-α

NOD2

Rag

Socs1

SOCS1

STAT1

Stat3

STAT4

Stat5

T-bet

TGF-β

TNFR1

TNFR2

TRADD

OMIM

autoimmune diseases

autoimmune lymphoproliferative disease

inflammatory bowel disease

multiple sclerosis

rheumatoid arthritis

SCID

systemic lupus erythematosus

type I diabetes

ulcerative colitis

FURTHER INFORMATION

Encyclopedia of Life Sciences

autoimmune disease: pathogenesis

cytokines

cytokines as mediators of disease

immunoregulation

interferons

Glossary

CROHN'S DISEASE

One of the two predominant forms of inflammatory bowel disease that afflicts human patients. The pathophysiology is unknown, but is presumed to be autoimmune in nature.

TOLERANCE

Denotes lymphocyte non-responsiveness to antigen, but implies an active process, not simply a passive lack of response.

PERIPHERAL TOLERANCE

This form of tolerance refers to the lack of responsiveness of mature lymphocytes.

LYMPHADENOPATHY

Enlargement of lymph nodes.

BLAU SYNDROME

A rare, autosomal-dominant disorder characterized by granulomatous arthritis, uveitis, skin rash and cranial neuropathy.

CENTRAL TOLERANCE

This form of tolerance refers to the lack of self-responsiveness found as lymphoid cells develop, and is associated with the deletion of autoreactive clones. For T cells, this occurs in the thymus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Shea, J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. Nat Rev Immunol 2, 37–45 (2002). https://doi.org/10.1038/nri702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing