Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic control of myeloid cell differentiation, identity and function

Key Points

  • The interplay between transcription factors and epigenetic regulators is crucial for regulating gene-expression programmes during haematopoiesis. Epigenetic regulation — including post-translational modification of histones and DNA methylation — is also linked with upstream signalling pathways and external signals that shape the identity and function of immune cells.

  • Distinctive DNA methylation changes characterize the differentiation of myeloid cells and lymphoid cells from their progenitors. DNA demethylation is more predominant during myeloid differentiation than during lymphoid differentiation.

  • The methylcytosine hydroxylase TET2, which oxidizes 5-methylcytosine, has a major role in the acquisition of myeloid cell identity. This has been demonstrated using transdifferentiation models and is highlighted by the association of TET2 mutations with myeloid malignancies.

  • Epigenetic control has a key role in defining macrophage polarization, connecting external stimuli with the establishment of specific transcriptional programmes.

  • Epigenetic modifications have a key role in the generation of memory-type behaviour in innate immune cells. Following an initial stimulus, the persistence of the trimethylated histone H3K4 at latent enhancers ensures the increased expression of pro-inflammatory genes after restimulation.

Abstract

Myeloid cells are crucial effectors of the innate immune response and important regulators of adaptive immunity. The differentiation and activation of myeloid cells requires the timely regulation of gene expression; this depends on the interplay of a variety of elements, including transcription factors and epigenetic mechanisms. Epigenetic control involves histone modifications and DNA methylation, and is coupled to lineage-specifying transcription factors, upstream signalling pathways and external factors released in the bone marrow, blood and tissue environments. In this Review, we highlight key epigenetic events controlling myeloid cell biology, focusing on those related to myeloid cell differentiation, the acquisition of myeloid identity and innate immune memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation events in the early stages of haematopoiesis.
Figure 2: Transcription factors and epigenetic regulators of haematopoietic cell differentiation.
Figure 3: Epigenetic regulation of memory-like activity in monocytes and macrophages.

Similar content being viewed by others

References

  1. De Kleer, I., Willems, F., Lambrecht, B. & Goriely, S. Ontogeny of myeloid cells. Front. Immunol. 5, 423 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  4. Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    CAS  PubMed  Google Scholar 

  5. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    CAS  PubMed  Google Scholar 

  6. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird, A., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    CAS  PubMed  Google Scholar 

  9. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    CAS  PubMed  Google Scholar 

  10. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genet. 41, 178–186 (2009).

    CAS  PubMed  Google Scholar 

  11. Maunakea, A. K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zilbauer, M. et al. Genome-wide methylation analyses of primary human leukocyte subsets identifies functionally important cell-type-specific hypomethylated regions. Blood 122, e52–e60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlesinger, F., Smith, A. D., Gingeras, T. R., Hannon, G. J. & Hodges, E. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements. Genome Res. 23, 1601–1614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  15. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    CAS  PubMed  Google Scholar 

  16. Piccolo, F. M. & Fisher, A. G. Getting rid of DNA methylation. Trends Cell Biol. 24, 136–143 (2014).

    CAS  PubMed  Google Scholar 

  17. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). This article demonstrates that TET1 oxidizes 5meC to 5hmC in vivo , indicating its potential role in epigenetic regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawlaty, M. M. et al. Loss of tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell 29, 102–111 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nature Genet. 46, 17–23 (2014).

    CAS  PubMed  Google Scholar 

  24. Laiosa, C. V., Stadtfeld, M. & Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu. Rev. Immunol. 24, 705–738 (2006).

    CAS  PubMed  Google Scholar 

  25. Wilting, R. H. et al. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J. 29, 2586–2597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Broske, A. M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature Genet. 41, 1207–1215 (2009).

    PubMed  Google Scholar 

  27. Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345, 1251033 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    CAS  PubMed  Google Scholar 

  29. Wada, T. et al. Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J. Biol. Chem. 284, 30673–30683 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Trowbridge, J. J., Snow, J. W., Kim, J. & Orkin, S. H. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5, 442–449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boehm, T. Evolution of vertebrate immunity. Curr. Biol. 22, R722–R732 (2012).

    CAS  PubMed  Google Scholar 

  34. Hodges, E. et al. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol. Cell 44, 17–28 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mansson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).

    PubMed  Google Scholar 

  36. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010). This article represents the first genome-wide analysis of DNA methylation during differentiation, identifying gene-specific hypomethylation in the myeloid lineage and an increase in methylation in the lymphoid lineage.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mossadegh-Keller, N. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bocker, M. T. et al. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117, e182–e189 (2011).

    CAS  PubMed  Google Scholar 

  39. Accomando, W. P., Wiencke, J. K., Houseman, E. A., Nelson, H. H. & Kelsey, K. T. Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol. 15, R50 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Ronnerblad, M. et al. Analysis of the DNA methylome and transcriptome in granulopoiesis reveal timed changes and dynamic enhancer methylation. Blood 123, e79–e89 (2014).

    PubMed  Google Scholar 

  41. Klug, M. et al. Active DNA demethylation in human postmitotic cells correlates with activating histone modifications, but not transcription levels. Genome Biol. 11, R63 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. Klug, M., Schmidhofer, S., Gebhard, C., Andreesen, R. & Rehli, M. 5-Hydroxymethylcytosine is an essential intermediate of active DNA demethylation processes in primary human monocytes. Genome Biol. 14, R46 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Zhang, X. et al. DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenet. Chromatin 7, 21 (2014).

    Google Scholar 

  44. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    CAS  PubMed  Google Scholar 

  45. Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755–766 (2006).

    CAS  PubMed  Google Scholar 

  46. Feng, R. et al. PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc. Natl Acad. Sci. USA 105, 6057–6062 (2008).

    CAS  PubMed  Google Scholar 

  47. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    CAS  PubMed  Google Scholar 

  48. Bussmann, L. H. et al. A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5, 554–566 (2009).

    CAS  PubMed  Google Scholar 

  49. Barneda-Zahonero, B. et al. HDAC7 is a repressor of myeloid genes whose downregulation is required for transdifferentiation of pre-B cells into macrophages. PLoS Genet. 9, e1003503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kallin, E. M. et al. Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells. Mol. Cell 48, 266–276 (2012). This article demonstrates a direct role for TET2 in the 5hmC-mediated activation of myeloid-specific genes during the acquisition of myeloid identity.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Di Stefano, B. et al. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 506, 235–239 (2014).

    CAS  PubMed  Google Scholar 

  54. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    PubMed  Google Scholar 

  55. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pronier, E. et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 118, 2551–2555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Google Scholar 

  58. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ko, M. et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    CAS  PubMed  Google Scholar 

  61. de la Rica, L. et al. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol. 14, R99 (2014).

    Google Scholar 

  62. Hervouet, E., Vallette, F. M. & Cartron, P. F. Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4, 487–499 (2009).

    CAS  PubMed  Google Scholar 

  63. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Rev. Immunol. 11, 750–761 (2011).

    CAS  Google Scholar 

  64. Mullican, S. E. et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 25, 2480–2488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, X. et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl Acad. Sci. USA 109, E2865–E2874 (2012).

    CAS  PubMed  Google Scholar 

  66. Ishii, M. et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114, 3244–3254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Satoh, T. et al. The Jmjd3–Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunol. 11, 936–944 (2010).

    CAS  Google Scholar 

  68. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  69. Barish, G. D. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 24, 2760–2765 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Adelman, K. et al. Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc. Natl Acad. Sci. USA 106, 18207–18212 (2009).

    CAS  PubMed  Google Scholar 

  71. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    CAS  PubMed  Google Scholar 

  72. Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Austenaa, L. et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity 36, 572–585 (2012).

    CAS  PubMed  Google Scholar 

  74. Lam, M. T. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511–515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  77. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    CAS  PubMed  Google Scholar 

  78. Quintin, J., Cheng, S. C., van der Meer, J. W. & Netea, M. G. Innate immune memory: towards a better understanding of host defense mechanisms. Curr. Opin. Immunol. 29C, 1–7 (2014).

  79. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013). This article identifies latent enhancers as key elements of innate immune memory; these are characterized by being marked with H3K4me3 following an initial stimulus.

    CAS  PubMed  Google Scholar 

  80. Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232 (2012). This article describes the H3K4me3 mark as a mediator of trained immunity in monocytes.

    CAS  PubMed  Google Scholar 

  81. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Adib-Conquy, M. & Cavaillon, J. M. Compensatory anti-inflammatory response syndrome. Thromb. Haemost. 101, 36–47 (2009).

    CAS  PubMed  Google Scholar 

  84. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007). This study characterizes the two types of TLR-induced responses and provides an epigenetic basis for the acquisition of endotoxin tolerance.

    CAS  PubMed  Google Scholar 

  85. Yang, X. et al. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol. 28, 565–574 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nature Rev. Cancer 12, 599–612 (2012).

    CAS  Google Scholar 

  88. Quintas-Cardama, A., Santos, F. P. & Garcia-Manero, G. Therapy with azanucleosides for myelodysplastic syndromes. Nature Rev. Clin. Oncol. 7, 433–444 (2010).

    CAS  Google Scholar 

  89. Patel, J. P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Xia, M. et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 39, 470–481 (2013).

    CAS  PubMed  Google Scholar 

  91. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nature Rev. Immunol. 13, 709–721 (2013).

    CAS  Google Scholar 

  92. Hoeksema, M. A. et al. Targeting macrophage histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol. Med. 6, 1124–1132 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cao, Q. et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb. Vasc. Biol. 34, 1871–1879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rodríguez-Ubreva, J. et al. Pre-B cell to macrophage transdifferentiation without significant promoter DNA methylation changes. Nucleic Acids Res. 40, 1954–1968 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SAF2011-29635 from the Spanish Ministry of Science and Innovation, grant CIVP16A1834 from the Fundación Ramón Areces and grant Precisesads 115565–3 of the Innovative Medicines Initiative (IMI) Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Ballestar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Histones

A family of basic proteins found in the nuclei of eukaryotic cells that package and organize DNA into repetitive structural units named nucleosomes.

Shores

Regions that are located within 2 kb of CpG islands and are usually methylation hotspots.

Shelves

Regions that flank CpG island shores and are located 2–4 kb from CpG islands.

Open sea

CpG sites that are located outside of the CpG island context.

Imprinted genes

Genes for which the expression status is determined by the parent that contributed them.

Methyl-CpG binding proteins

A family of proteins characterized by the presence of the methyl-CpG binding domain, several of which are integral components of or are involved in the recruitment of different histone deacetylase complexes and chromatin remodelling factors of different nuclear complexes that have a role in gene expression.

Yamanaka factors

A set of transcription factors that are highly expressed in embryonic stem cells. Their overexpression induces pluripotency in somatic cells.

'M1' or 'classical' activation

Lipopolysaccharide- or interferon-γ-mediated stimulation of macrophages leading to a pro-inflammatory phenotype.

'M2' or 'alternative' activation

Interleukin-4-dependent stimulation of macrophages that leads to an anti-inflammatory phenotype.

Enhancer RNAs

(eRNAs). A class of relatively short non-coding RNA molecules (50–2000 nucleotides in length) that are transcribed from the DNA sequence of enhancer regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Errico, D., Vento-Tormo, R., Sieweke, M. et al. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 15, 7–17 (2015). https://doi.org/10.1038/nri3777

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing