Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Pro-cognitive properties of T cells

Abstract

Interactions between the central nervous system and the immune system have been studied primarily in the context of pathology, popularizing the view that interplay between these two systems is inherently detrimental. However, recent experimental data have demonstrated productive neuroimmune interactions that occur under normal physiological conditions. In this Essay, we outline our current understanding of contemporary neuroimmunology, describe a working model of T cell function in support of learning and memory, and offer ideas regarding the selective advantages of immune-mediated effects on brain function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the Morris water maze.
Figure 2: T cell-competent and T cell-deficient meningeal spaces and their effects on learning behaviour.
Figure 3: Brain-derived molecular cues and their targets.
Figure 4: A model for the physiological recall of T cells to support learning behaviour versus a response to a pathogen.

References

  1. Hohlfeld, R. & Wekerle, H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14599–14606 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stromnes, I. M., Cerretti, L. M., Liggitt, D., Harris, R. A. & Goverman, J. M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nature Med. 14, 337–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Huseby, E. S., Sather, B., Huseby, P. G. & Goverman, J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 14, 471–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nature Med. 13, 423–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ponomarev, E. D., Veremeyko, T., Barteneva, N., Krichevsky, A. M. & Weiner, H. L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU.1 pathway. Nature Med. 17, 64–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lanz, T. V. et al. Angiotensin II sustains brain inflammation in mice via TGF-β. J. Clin. Invest. 120, 2782–2794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bechmann, I., Galea, I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Goehler, L. E. et al. Interleukin-1β in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J. Neurosci. 19, 2799–2806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen, H. et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J. Neurobiol. 66, 552–563 (2006).

    Article  PubMed  Google Scholar 

  12. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brynskikh, A., Warren, T., Zhu, J. & Kipnis, J. Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yoles, E. & Schwartz, M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp. Neurol. 153, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Yoles, E. et al. Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21, 3740–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kipnis, J. et al. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci. 21, 4564–4571 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Med. 5, 49–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Moalem, G. et al. Autoimmune T cells retard the loss of function in injured rat optic nerves. J. Neuroimmunol. 106, 189–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hauben, E. et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J. Clin. Invest. 108, 591–599 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hauben, E. et al. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J. Neurosci. 23, 8808–8819 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frenkel, D. et al. Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J. Neurol. Sci. 233, 125–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Moalem, G. et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J. Autoimmun. 20, 6421–6430 (2000).

    Google Scholar 

  24. Serpe, C. J., Byram, S. C., Sanders, V. M. & Jones, K. J. Brain-derived neurotrophic factor supports facial motoneuron survival after facial nerve transection in immunodeficient mice. Brain Behav. Immun. 19, 173–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Shaked, I. et al. Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J. Neurochem. 92, 997–1009 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Garg, S. K., Banerjee, R. & Kipnis, J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J. Immunol. 180, 3866–3873 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lewitus, G. M. et al. Vaccination as a novel approach for treating depressive behavior. Biol. Psychiatry 65, 283–288 (2009).

    Article  PubMed  Google Scholar 

  29. Lewitus, G. M., Cohen, H. & Schwartz, M. Reducing post-traumatic anxiety by immunization. Brain Behav. Immun. 22, 1108–1114 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Conrad, C. D. A critical review of chronic stress effects on spatial learning and memory. Prog.Neuropsychopharmacol. Biol. Psychiatry 34, 742–755 (2010).

    Article  PubMed  Google Scholar 

  31. Goshen, I. et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717–728 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolf, S. A. et al. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J. 23, 3121–3128 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Wolf, S. A. et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182, 3979–3984 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kivisakk, P., Tucky, B., Wei, T., Campbell, J. J. & Ransohoff, R. M. Human cerebrospinal fluid contains CD4+ memory T cells expressing gut- or skin-specific trafficking determinants: relevance for immunotherapy. BMC Immunol. 7, 14 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Engelhardt, B. & Ransohoff, R. M. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 26, 485–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kivisakk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Trettel, F., Di Angelantonio, S., Limatola, C. & Ransohoff, R. M. Chemokines and chemokine receptors in the nervous system: Rome, 27/28 October, 2007. J. Neuroimmunol. 198, 1–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Li, M. & Ransohoff, R. M. Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog. Neurobiol. 84, 116–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schulze-Topphoff, U. et al. Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nature Med. 15, 788–793 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Cayrol, R. et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nature Immunol. 9, 137–145 (2008).

    Article  CAS  Google Scholar 

  45. Derecki, N. C., Quinnies, K. M. & Kipnis, J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav. Immun. 25, 379–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Nautiyal, K. M., Liu, C., Dong, X. & Silver, R. Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. J. Neuroimmunol. 240241, 142–146 (2011).

    Article  PubMed  Google Scholar 

  47. Nautiyal, K. M., Ribeiro, A. C., Pfaff, D. W. & Silver, R. Brain mast cells link the immune system to anxiety-like behavior. Proc. Natl Acad. Sci. USA 105, 18053–18057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anandasabapathy, N. et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med. 208, 1695–1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  Google Scholar 

  50. Kelley, K. W. et al. Cytokine-induced sickness behavior. Brain Behav. Immun. 17, S112–S118 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Tracey, K. J. Reflex control of immunity. Nature Rev. Immunol. 9, 418–428 (2009).

    Article  CAS  Google Scholar 

  53. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  54. Vizi, E. S. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 52, 63–89 (2000).

    CAS  PubMed  Google Scholar 

  55. Vizi, E. S. & Kiss, J. P. Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus 8, 566–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Alaniz, R. C. et al. Dopamine β-hydroxylase deficiency impairs cellular immunity. Proc. Natl Acad. Sci. USA 96, 2274–2278 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kipnis, J. et al. Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: implications for neurodegeneration. J. Neurosci. 24, 6133–6143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Besser, M. J., Ganor, Y. & Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFα or both. J. Neuroimmunol. 169, 161–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Hasko, G., Szabo, C., Nemeth, Z. H. & Deitch, E. A. Dopamine suppresses IL-12 p40 production by lipopolysaccharide-stimulated macrophages via a β-adrenoceptor-mediated mechanism. J. Neuroimmunol. 122, 34–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Tokuyama, W., Okuno, H., Hashimoto, T., Xin Li, Y. & Miyashita, Y. BDNF upregulation during declarative memory formation in monkey inferior temporal cortex. Nature Neurosci. 3, 1134–1142 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kemppainen, S. et al. Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice. Neurobiol. Aging 33, 1122.e23–1122.e39 (2012).

    Article  CAS  Google Scholar 

  62. Meis, S., Endres, T. & Lessmann, V. Postsynaptic BDNF signalling regulates long-term potentiation at thalamo-amygdala afferents. J. Physiol. 590, 193–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Y. F. et al. Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol. Learn. Memory 90, 81–89 (2008).

    Article  CAS  Google Scholar 

  64. Matzinger, P. & Kamala, T. Tissue-based class control: the other side of tolerance. Nature Rev. Immunol. 11, 221–230 (2011).

    Article  CAS  Google Scholar 

  65. Yamaguchi, N. et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 579, 6821–6826 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Tumanov, A. V. et al. T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology 136, 694–704 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Smith and N. Watson for editing the manuscript. We thank the members of the Kipnis laboratory for their valuable comments during multiple discussions of this work. N.C.D. is the recipient of a Hartwell Foundation postdoctoral fellowship. This work was primarily supported by a grant from the US National Institute on Aging, National Institutes of Health (award AG034113 to J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Kipnis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jonathan Kipnis's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipnis, J., Gadani, S. & Derecki, N. Pro-cognitive properties of T cells. Nat Rev Immunol 12, 663–669 (2012). https://doi.org/10.1038/nri3280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing