Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Highlights of 10 years of immunology in Nature Reviews Immunology

Subjects

Abstract

As Nature Reviews Immunology reaches its 10th anniversary, the authors of one of the top-cited articles from each year take a trip down memory lane. We've asked them to look back on the state of research at the time their Review was published, to consider why the article has had the impact it has and to discuss the future directions of their field. This Viewpoint article provides an interesting snapshot of some of the fundamental advances in immunology over the past 10 years. Highlights include our improved understanding of Toll-like receptor signalling, and of immune regulation mediated by regulatory T cells, indoleamine 2,3-dioxygenase, myeloid-derived suppressor cells and interleukin-10. The complexities in the development and heterogeneity of macrophages, dendritic cells and T helper cells continue to engage immunologists, as do the immune processes involved in diseases such as atherosclerosis. We look forward to what the next 10 years of immunology research may bring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Toll signalling pathways.
Figure 2: Plaque activation, rupture and thrombosis.
Figure 3: Pathways to splenic dendritic cells.
Figure 4: General scheme of T-helper-cell differentiation.
Figure 5: Signals that induce interleukin-10 expression by cells of the innate immune response.

Similar content being viewed by others

References

  1. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  2. Shevach, E. CD4+CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  3. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  4. Shevach, E. M. Certified professionals: CD4+CD25+ suppressor T cells. J. Exp. Med. 193, F41–F45 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horri, S., Nomura, T. & Sakaguchi, S. Control of T regulatory cell development by the transcription factor Foxp3. Science 299, 1057–1062 (2003).

    Article  CAS  Google Scholar 

  6. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol. 7, 523–532 (2008).

    Article  CAS  Google Scholar 

  9. Shevach, E. M. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–642 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  Google Scholar 

  12. Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827–845 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Wolf, S. F. et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol. 146, 3074–3081 (1991).

    CAS  PubMed  Google Scholar 

  14. Manetti, R. et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177, 1199–1204 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Hsieh, C. S., Macatonia, S. E., O'Garra, A. & Murphy, K. M. Pathogen-induced Th1 phenotype development in CD4+ αβ-TCR transgenic T cells is macrophage dependent. Int. Immunol. 5, 371–382 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Jankovic, D. et al. In the absence of IL-12, CD4+ T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10−/− setting. Immunity 16, 429–439 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, G. X. et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-β2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J. Immunol. 170, 2153–2160 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kastelein, R. A., Hunter, C. A. & Cua, D. J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  Google Scholar 

  23. Munn, D. H. Indoleamine 2,3-dioxygenase, Tregs and cancer. Curr. Med. Chem. 18, 2240–2246 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature Med. 11, 312–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Favre, D. et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med. 2, 32ra36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Desvignes, L. & Ernst, J. D. Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31, 974–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Divanovic, S. et al. Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection. J. Infect. Dis. (in the press).

  28. Swanson, K. A., Zheng, Y., Heidler, K. M., Mizobuchi, T. & Wilkes, D. S. CDllc+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am. J. Respir. Cell Mol. Biol. 30, 311–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, H. et al. Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J. Immunol. 183, 1022–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 1–10 (2005).

    Article  CAS  Google Scholar 

  31. Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Puccetti, P. & Grohmann, U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nature Rev. Immunol. 7, 817–823 (2007).

    Article  CAS  Google Scholar 

  33. Mellor, A. L. & Munn, D. H. Physiologic control of the functional status of Foxp3+ regulatory T cells. J. Immunol. 186, 4535–4540 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sharma, M. D. et al. Reprogrammed Foxp3+ regulatory T cells provide essential help to support cross-presentation and CD8+ T cell priming in naive mice. Immunity 33, 942–954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordon, S., Hamann, J., Lin, H.-H. & Stacey, M. Celebrating 30 years. F4/80 and the related adhesion-GPCRs. Eur. J. Immunol. 41, 2472–2476 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ziegler-Heitbrock, L. The CD14+CD16+ blood monocytes: their role in infection and inflammation. J. Leuk. Biol. 81, 584–592 (2007).

    Article  CAS  Google Scholar 

  38. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

  39. Geissmann, F., Gordon, S., Hume, D. A., Mowat, A. M. & Randolph, G. J. Unravelling mononuclear phagocyte heterogeneity. Nature Rev. Immunol. 10, 453–460 (2010).

    Article  CAS  Google Scholar 

  40. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  Google Scholar 

  41. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol. 11, 889–896 (2010).

    Article  CAS  Google Scholar 

  42. Gordon, S. & Martinez, F. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  Google Scholar 

  44. Hermansson, A. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207, 1081–1093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pober, J. S. Interleukin-17 and atherosclerotic vascular disease. Arterioscler. Thromb. Vasc. Biol. 31, 1465–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Emerging risk factors collaboration et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

  47. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Ridker, P. M. et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373, 1175–1182 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007).

    Article  CAS  Google Scholar 

  51. Villadangos, J. A. & Shortman, K. Found in translation: the human equivalent of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1131–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Helft, J., Ginhoux, F., Bogunovic, M. & Merad, M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev. 234, 55–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, K. et al. Origin of dendritic cells in peripheral organs of mice. Nature Immunol. 8, 578–583 (2007).

    Article  CAS  Google Scholar 

  54. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature Immunol. 8, 1207–1216 (2007).

    Article  CAS  Google Scholar 

  55. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol. 8, 1217–1226 (2007).

    Article  CAS  Google Scholar 

  56. Schumacher, T. N., Gerlach, C. & van Heijst, J. W. Mapping the life histories of T cells. Nature Rev. Immunol. 10, 621–631 (2010).

    Article  CAS  Google Scholar 

  57. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  58. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dong, C. Genetic controls of Th17 cell differentiation and plasticity. Exp. Mol. Med. 43, 1–6 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  63. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hueber, W. et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2, 52ra72 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Solt, L. A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, T. et al. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. J. Biol. Chem. 286, 22707–22710 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  69. Srivastava, M. K., Sinha, P., Clements, V. K., Rodriguez, P. & Ostrand-Rosenberg, S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70, 68–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Mauti, L. A. et al. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J. Clin. Invest. 121, 2794–2807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marigo, I. et al. Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity 32, 790–802 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Ma, G. et al. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34, 385–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sander, L. E. et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 207, 1453–1464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ilkovitch, D. & Lopez, D. M. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res. 69, 5514–5521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rodriguez, P. C. et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Wilde, V. et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am. J. Transplant. 9, 2034–2047 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nature Rev. Immunol. 10, 170–181 (2010).

    Article  CAS  Google Scholar 

  80. Kaiser, F. et al. TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells. J. Exp. Med. 206, 1863–1871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Slack, E. C. et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 37, 1600–1612 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Saraiva, M. et al. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31, 209–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shoemaker, J., Saraiva, M. & O'Garra, A. GATA-3 directly remodels the IL-10 locus independently of IL-4 in CD4+ T cells. J. Immunol. 176, 3470–3479 (2006).

    CAS  PubMed  Google Scholar 

  84. Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J. Immunol. 182, 6226–6236 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Belkaid, Y. et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Anderson, C. F. et al. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jankovic, D. et al. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Redford, P. S., Murray, P. J. & O'Garra, A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 4, 261–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Maynard, C. L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nature Immunol. 8, 931–941 (2007).

    Article  CAS  Google Scholar 

  91. Chaudhry, A. et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34, 566–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34, 554–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Andrew L. Mellor and David H. Munn are members of the scientific advisory board of NewLink Genetics, Inc. and receive compensation and stock options from this source.

Peter Libby is an unpaid investigator in clinical trials of anti-inflammatory treatment of atherosclerosis.

Göran K. Hansson has patents related to immunotherapy of atherosclerosis.

Related links

FURTHER INFORMATION

Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001)

Shevach, E. CD4±CD25± suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002)

Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol. 3, 133–146 (2003)

Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004)

Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005)

Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol. 6, 508–519 (2006)

Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007)

Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Rev. Immunol. 8, 337–348 (2008)

Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009)

Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nature Rev. Immunol. 10, 170–181 (2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medzhitov, R., Shevach, E., Trinchieri, G. et al. Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol 11, 693–702 (2011). https://doi.org/10.1038/nri3063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing