Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perforin-mediated target-cell death and immune homeostasis

Key Points

  • Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells kill virus-infected and transformed cells through both the death-receptor and granule exocytosis pathways. The perforin-dependent granule exocytosis mechanism is crucial for protecting the host against many viral infections, and in mice this pathway is involved in immune surveillance of certain spontaneous cancers, especially B-cell lymphomas.

  • In both humans and rodents, perforin is crucial for the function of the granule exocytosis pathway, as it is required for the trafficking of granzymes to their pro-apoptotic substrates in the target cell. Deficiency in perforin results in severe immune dysregulation. By contrast, deficiencies in single granzymes result in milder immunodeficiency phenotypes.

  • Perforin is encoded by a single gene, and although its primary sequence has some similarity to portions of the complement components that make up the membrane-attack complex, it is otherwise unique. The toxicity of perforin in various expression systems has made it difficult to study its structure and function. However, suitable and informative expression modalities have recently been developed.

  • In humans, congenital perforin deficiency accounts for 30–60% of known cases of the severe immunodeficiency disorder familial haemophagocytic lymphohistiocytosis (FHL). Infants typically present with marked enlargement of the liver and lymphoid organs, anaemia and sometimes neurological deficits, frequently following an otherwise innocuous viral infection.

  • Some of the missense mutations that are associated with FHL have proved invaluable in defining the normal function of certain perforin residues and domains. As a result, we now understand the basis for calcium binding to the C2 domain of perforin, which is necessary for perforin to bind irreversibly to the target-cell plasma membrane.

  • The Ala91Val mutation in perforin is a common isoform in some human populations and had previously been considered an innocent polymorphism. Recent evidence from several groups indicates that the Ala91Val mutation might result in loss of perforin function, raising the issue of why this allele has persisted in the human population.

Abstract

The granule exocytosis pathway of cytotoxic lymphocytes is crucial for immune surveillance and homeostasis. The trafficking of granule components, including the membrane-disruptive protein perforin, to the immunological synapse leads to the delivery of granule proteases (granzymes) into the target cell and its destruction through apoptosis. Several independent molecular abnormalities associated with defects of either granule trafficking or perforin function can cause cytotoxic lymphocyte dysfunction. In humans, inherited perforin mutations result in severe immune dysregulation that manifests as familial haemophagocytic lymphohistiocytosis. This Review describes recent progress in defining the structure, function, biochemistry and cell biology of perforin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of perforin and granzyme synergy in target-cell death.
Figure 2: A schematic representation of the putative functional domains of perforin.
Figure 3: Degree of perforin function correlates with onset of familial haemophagocytic lymphohistiocytosis.

Similar content being viewed by others

References

  1. Clark, W. R. Immunology. The hole truth about perforin. Nature 369, 16–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994). The importance of perforin in clearing virus-infected and transformed cells is shown for the first time using perforin-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  3. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Kagi, D. & Hengartner, H. Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr. Opin. Immunol. 8, 472–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Katano, H. & Cohen, J. I. Perforin and lymphohistiocytic proliferative disorders. Br. J. Haematol. 128, 739–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Janka, G. E. Familial hemophagocytic lymphohistiocytosis. Eur. J. Pediatr. 140, 221–230 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Henter, J. I., Arico, M., Elinder, G., Imashuku, S. & Janka, G. Familial hemophagocytic lymphohistiocytosis. Primary hemophagocytic lymphohistiocytosis. Hematol. Oncol. Clin. North Am. 12, 417–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Menasche, G., Feldmann, J., Fischer, A. & de Saint Basile, G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol. Rev. 203, 165–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Trapani, J. A. & Sutton, V. R. Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr. Opin. Immunol. 15, 533–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Deng, A. et al. Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J. Immunol. 174, 5243–5248 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hwang, J. Y., Ohira, T., Hirono, I. & Aoki, T. A pore-forming protein, perforin, from a non-mammalian organism, Japanese flounder, Paralichthys olivaceus. Immunogenetics 56, 360–367 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Rev. Immunol. 2, 735–747 (2002).

    Article  CAS  Google Scholar 

  13. Barry, M. & Bleackley, R. C. Cytotoxic T lymphocytes: all roads lead to death. Nature Rev. Immunol. 2, 401–409 (2002).

    Article  CAS  Google Scholar 

  14. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Waterhouse, N. J. et al. A central role for BID in granzyme B-induced apoptosis. J. Biol. Chem. 280, 4476–4482 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sutton, V. R., Wowk, M. E., Cancilla, M. & Trapani, J. A. Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity 18, 319–329 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Heibein, J. A. et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J. Exp. Med. 192, 1391–1402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lieberman, J. & Fan, Z. Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol. 15, 553–559 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Fan, Z., Beresford, P. J., Zhang, D. & Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol. 22, 2810–2820 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, H., Scorrano, L., Korsmeyer, S. J. & Ley, T. J. Cell death induced by granzyme C. Blood 101, 3093–3101 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, J. M. et al. Granzyme M mediates a novel form of perforin-dependent cell death. J. Biol. Chem. 279, 22236–22242 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Mullbacher, A. et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc. Natl Acad. Sci. USA 96, 13950–13955 (1999). This study shows that granzymes A and B, when acting synergistically with perforin, are essential for controlling primary virus infections in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trapani, J. A. Dual mechanisms of apoptosis induction by cytotoxic lymphocytes. Int. Rev. Cytol. 182, 111–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Devadas, S. et al. Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity 25, 237–247 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Keefe, D. et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. McNeil, P. L. & Kirchhausen, T. An emergency response team for membrane repair. Nature Rev. Mol. Cell Biol. 6, 499–505 (2005).

    Article  CAS  Google Scholar 

  27. McNeil, P. L. & Terasaki, M. Coping with the inevitable: how cells repair a torn surface membrane. Nature Cell Biol. 3, e124–e129 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Henkart, P. A., Millard, P. J., Reynolds, C. W. & Henkart, M. P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J. Exp. Med. 160, 75–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Masson, D. & Tschopp, J. Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J. Biol. Chem. 260, 9069–9072 (1985).

    CAS  PubMed  Google Scholar 

  31. Podack, E. R., Young, J. D. & Cohn, Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc. Natl Acad. Sci. USA 82, 8629–8633 (1985). References 29–31 are the first reports of the isolation and characterization of perforin from cytotoxic lymphocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, C. C., Perussia, B., Cohn, Z. A. & Young, J. D. Identification and characterization of a pore-forming protein of human peripheral blood natural killer cells. J. Exp. Med. 164, 2061–2076 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Tschopp, J., Masson, D. & Schafer, S. Inhibition of the lytic activity of perforin by lipoproteins. J. Immunol. 137, 1950–1953 (1986).

    CAS  PubMed  Google Scholar 

  34. Young, J. D., Hengartner, H., Podack, E. R. & Cohn, Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44, 849–859 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Young, J. D., Liu, C. C., Leong, L. G. & Cohn, Z. A. The pore-forming protein (perforin) of cytolytic T lymphocytes is immunologically related to the components of membrane attack complex of complement through cysteine-rich domains. J. Exp. Med. 164, 2077–2082 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Young, J. D., Podack, E. R. & Cohn, Z. A. Properties of a purified pore-forming protein (perforin 1) isolated from H-2-restricted cytotoxic T cell granules. J. Exp. Med. 164, 144–155 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Young, J. D., Damiano, A., DiNome, M. A., Leong, L. G. & Cohn, Z. A. Dissociation of membrane binding and lytic activities of the lymphocyte pore-forming protein (perforin). J. Exp. Med. 165, 1371–1382 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Lichtenheld, M. G. et al. Structure and function of human perforin. Nature 335, 448–451 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Persechini, P. M. & Young, J. D. The primary structure of the lymphocyte pore-forming protein perforin: partial amino acid sequencing and determination of isoelectric point. Biochem. Biophys. Res. Commun. 156, 740–745 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Persechini, P. M., Liu, C. C., Jiang, S. & Young, J. D. The lymphocyte pore-forming protein perforin is associated with granules by a pH-dependent mechanism. Immunol. Lett. 22, 23–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Roozemond, R. C., Urli, D. C., Jansen, J. & Bonavida, B. Liposomes can function as targets for natural killer cytotoxic factor but not for tumor necrosis factor. J. Immunol. 142, 1209–1216 (1989).

    CAS  PubMed  Google Scholar 

  42. Tschopp, J., Schafer, S., Masson, D., Peitsch, M. C. & Heusser, C. Phosphorylcholine acts as a Ca2+-dependent receptor molecule for lymphocyte perforin. Nature 337, 272–274 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, S. B., Ojcius, D. M. & Young, J. D. Perforin binding to cells and lipid membranes determined by a simple competition assay. J. Immunol. Methods 126, 29–37 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Kraut, R. P., Bose, D., Cragoe, E. J. Jr & Greenberg, A. H. The influence of calcium, sodium, and the Na+/Ca2+ antiport on susceptibility to cytolysin/perforin-mediated cytolysis. J. Immunol. 144, 3498–3505 (1990).

    CAS  PubMed  Google Scholar 

  45. Persechini, P. M., Young, J. D. & Almers, W. Membrane channel formation by the lymphocyte pore-forming protein: comparison between susceptible and resistant target cells. J. Cell Biol. 110, 2109–2116 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Peters, R., Sauer, H., Tschopp, J. & Fritzsch, G. Transients of perforin pore formation observed by fluorescence microscopic single channel recording. EMBO J. 9, 2447–2451 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, C. C., Walsh, C. M. & Young, J. D. Perforin: structure and function. Immunol. Today 16, 194–201 (1995).

    Article  PubMed  Google Scholar 

  48. Rochel, N. & Cowan, J. Negative cooperativity exhibited by the lytic amino-terminal domain of human perforin: implications for perforin-mediated cell lysis. Chem. Biol. 3, 31–36 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Natarajan, K. & Cowan, J. A. Solution structure of a synthetic lytic peptide: the perforin amino terminus. Chem. Biol. 5, 147–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5, 2375–2390 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pappa, H., Murray-Rust, J., Dekker, L. V., Parker, P. J. & McDonald, N. Q. Crystal structure of the C2 domain from protein kinase C-δ. Structure 6, 885–894 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Sutton, R. B., Ernst, J. A. & Brunger, A. T. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca2+-independent SNARE complex interaction. J. Cell Biol. 147, 589–598 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Voskoboinik, I. et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J. Biol. Chem. 280, 8426–8434 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997). Post-translational modifications of perforin are shown to be essential for its proteolytic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Balaji, K. N., Schaschke, N., Machleidt, W., Catalfamo, M. & Henkart, P. A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baran, K. et al. Cytotoxic T lymphocytes from cathepsin B-deficient mice survive normally in vitro and in vivo after encountering and killing target cells. J. Biol. Chem. 281, 30485–30491 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Henter, J. I., Elinder, G., Soder, O. & Ost, A. Incidence in Sweden and clinical features of familial hemophagocytic lymphohistiocytosis. Acta Paediatr. Scand. 80, 428–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Janka, G. & Zur Stadt, U. Familial and acquired hemophagocytic lymphohistiocytosis. Hematology Am. Soc. Hematol. Educ. Program 82–88 (2005).

  59. Farquhar, J. W. & Claireaux, A. E. Familial haemophagocytic reticulosis. Arch. Dis. Child. 27, 519–525 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999). This is the first study that shows the physiological significance of perforin in humans. Perforin mutations in both alleles are linked to the cause of FHL.

    Article  CAS  PubMed  Google Scholar 

  61. Clementi, R. et al. Six novel mutations in the PRF1 gene in children with haemophagocytic lymphohistiocytosis. J. Med. Genet. 38, 643–646 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feldmann, J. et al. Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br. J. Haematol. 117, 965–972 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Molleran Lee, S. et al. Characterisation of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J. Med. Genet. 41, 137–144 (2004). This is the largest mutational analysis of the perforin gene in patients with FHL2.

    Article  CAS  PubMed  Google Scholar 

  64. Ohadi, M. et al. Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3–22 by homozygosity mapping. Am. J. Hum. Genet. 64, 165–171 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feldmann, J. et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003). A trafficking defect in cytotoxic lymphocytes that is due to mutations in a Munc-protein-family member is associated with patients with the FHL3 form of disease.

    Article  CAS  PubMed  Google Scholar 

  66. Neeft, M. et al. Munc13–4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell 16, 731–741 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishii, E. et al. Review of hemophagocytic lymphohistiocytosis (HLH) in children with focus on Japanese experiences. Crit. Rev. Oncol. Hematol. 53, 209–223 (2005).

    Article  PubMed  Google Scholar 

  68. Ishii, E. et al. Genetic subtypes of familial hemophagocytic lymphohistiocytosis: correlations with clinical features and cytotoxic T lymphocyte/natural killer cell functions. Blood 105, 3442–3448 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. zur Stadt, U. et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet. 14, 827–834 (2005). The fourth gene associated with FHL is identified as a member of the SNARE family of proteins, syntaxin 11.

    Article  CAS  PubMed  Google Scholar 

  70. Zur Stadt, U. et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum. Mutat. 27, 62–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Imashuku, S. et al. Occurrence of haemophagocytic lymphohistiocytosis at less than 1 year of age: analysis of 96 patients. Eur. J. Pediatr. 164, 315–319 (2005).

    Article  PubMed  Google Scholar 

  72. Badovinac, V. P., Hamilton, S. E. & Harty, J. T. Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity 18, 463–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Jordan, M. B., Hildeman, D., Kappler, J. & Marrack, P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon γ are essential for the disorder. Blood 104, 735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, S. M. et al. Patients of African ancestry with hemophagocytic lymphohistiocytosis share a common haplotype of PRF1 with a 50delT mutation. J. Pediatr. 149, 134–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Voskoboinik, I., Thia, M. C. & Trapani, J. A. A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood 105, 4700–4706 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Shiver, J. W. & Henkart, P. A. A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64, 1175–1181 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Voskoboinik, I. et al. The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene. J. Exp. Med. 200, 811–816 (2004). This is the introduction of novel methodologies for studying perforin function. It is the first formal demonstration that perforin mutations found in patients with FHL affect perforin function at the presynaptic or postsynaptic levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Risma, K. A., Frayer, R. W., Filipovich, A. H. & Sumegi, J. Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis. J. Clin. Invest. 116, 182–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Trapani, J. A. & Voskoboinik, I. The vexed question of assessing perforin expression, processing and function. J. Clin. Invest., [online] (2006).

  80. Trambas, C. et al. A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood 106, 932–937 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Santoro, A. et al. A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia? Haematologica 90, 697–698 (2005).

    PubMed  Google Scholar 

  82. Zur Stadt, U. et al. A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood 104, 1909–1910 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Busiello, R. et al. Role of A91V mutation in perforin gene in hemophagocytic lymphohistiocytosis. Blood 104, 1910 (2004).

    CAS  Google Scholar 

  84. Busiello, R. et al. Atypical features of familial hemophagocytic lymphohistiocytosis. Blood 103, 4610–4612 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Clementi, R. et al. Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations. Blood 100, 2266–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Mancebo, E. et al. Familial hemophagocytic lymphohistiocytosis in an adult patient homozygous for A91V in the perforin gene, with tuberculosis infection. Haematologica 91, 1257–1260 (2006).

    PubMed  Google Scholar 

  87. Clementi, R. et al. Variations of the perforin gene in patients with autoimmunity/lymphoproliferation and defective Fas function. Blood 108, 3079–3084 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Smyth, M. J., Voskoboinik, I. & Trapani, J. A. Immune surveillance of lymphoma in humans? Blood 105, 4159–4160 (2005).

    Article  CAS  Google Scholar 

  89. Clementi, R. et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 105, 4424–4428 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Mehta, P. A. et al. Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Leukemia 20, 1539–1541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakajima, H., Park, H. L. & Henkart, P. A. Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/perforin. J. Exp. Med. 181, 1037–1046 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Shiver, J. W., Su, L. & Henkart, P. A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71, 315–322 (1992). Reconstitution of perforin and granzyme in a cellular system shows their synergistic mode of action.

    Article  CAS  PubMed  Google Scholar 

  93. Binder, D. et al. Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus. J. Exp. Med. 187, 1903–1920 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shustov, A. et al. Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity. J. Clin. Invest. 106, R39–R47 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spielman, J., Lee, R. K. & Podack, E. R. Perforin/Fas-ligand double deficiency is associated with macrophage expansion and severe pancreatitis. J. Immunol. 161, 7063–7070 (1998).

    CAS  PubMed  Google Scholar 

  97. Kagi, D., Odermatt, B. & Mak, T. W. Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol. 29, 3262–3272 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Spaner, D., Raju, K., Rabinovich, B. & Miller, R. G. A role for perforin in activation-induced T cell death in vivo: increased expansion of allogeneic perforin-deficient T cells in SCID mice. J. Immunol. 162, 1192–1199 (1999).

    CAS  PubMed  Google Scholar 

  99. Loh, J., Chu, D. T., O'Guin, A. K., Yokoyama, W. M. & Virgin, H. W. T. Natural killer cells utilize both perforin and γ interferon to regulate murine cytomegalovirus infection in the spleen and liver. J. Virol. 79, 661–667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tay, C. H. et al. The role of LY49 NK cell subsets in the regulation of murine cytomegalovirus infections. J. Immunol. 162, 718–726 (1999).

    CAS  PubMed  Google Scholar 

  101. Gupta, M. et al. CD8-mediated protection against Ebola virus infection is perforin dependent. J. Immunol. 174, 4198–4202 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Muller, U. et al. Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur. J. Immunol. 33, 70–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Ma, L. L. et al. NK cells use perforin rather than granulysin for anticryptococcal activity. J. Immunol. 173, 3357–3365 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Mullbacher, A. et al. Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc. Natl Acad. Sci. USA 93, 5783–5787 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Riera, L. et al. Murine cytomegalovirus replication in salivary glands is controlled by both perforin and granzymes during acute infection. Eur. J. Immunol. 30, 1350–1355 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Harty, J. T. & Badovinac, V. P. Influence of effector molecules on the CD8+ T cell response to infection. Curr. Opin. Immunol. 14, 360–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000). Perforin-regulated lymphocyte cytotoxicity protects against lymphomagenesis and is responsible for the rejection of transplanted primary lymphomas in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Street, S. E., Trapani, J. A., MacGregor, D. & Smyth, M. J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med. 196, 129–134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Street, S. E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Curcio, C. et al. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J. Clin. Invest. 111, 1161–1170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brady, J., Hayakawa, Y., Smyth, M. J. & Nutt, S. L. IL-21 induces the functional maturation of murine NK cells. J. Immunol. 172, 2048–2058 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Smyth, M. J. et al. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    CAS  PubMed  Google Scholar 

  113. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Bird, C. H. et al. Cationic sites on granzyme B contribute to cytotoxicity by promoting its uptake into target cells. Mol. Cell. Biol. 25, 7854–7867 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Barry, M. et al. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell. Biol. 20, 3781–94 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grossman, W. J. et al. Development of hemophagocytic lymphohistiocytosis in triplets infected with HHV-8. Blood 106, 1203–1206 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kogawa, K. et al. Perforin expression in cytotoxic lymphocytes from patients with hemophagocytic lymphohistiocytosis and their family members. Blood 99, 61–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Katano, H. et al. Chronic active Epstein–Barr virus infection associated with mutations in perforin that impair its maturation. Blood 103, 1244–1252 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Ueda, I. et al. Correlation between phenotypic heterogeneity and gene mutational characteristics in familial hemophagocytic lymphohistiocytosis (FHL). Pediatr. Blood Cancer 46, 482–488 (2006).

    Article  PubMed  Google Scholar 

  121. Feldmann, J. et al. Severe and progressive encephalitis as a presenting manifestation of a novel missense perforin mutation and impaired cytolytic activity. Blood 105, 2658–2663 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Nagle, D. L. et al. Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome. Nature Genet. 14, 307–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Barbosa, M. D. et al. Identification of the homologous beige and Chediak–Higashi syndrome genes. Nature 382, 262–265 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Introne, W., Boissy, R. E. & Gahl, W. A. Clinical, molecular, and cell biological aspects of Chediak–Higashi syndrome. Mol. Genet. Metab. 68, 283–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Clark, R. & Griffiths, G. M. Lytic granules, secretory lysosomes and disease. Curr. Opin. Immunol. 15, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Trambas, C. M. & Griffiths, G. M. Delivering the kiss of death. Nature Immunol. 4, 399–403 (2003).

    Article  CAS  Google Scholar 

  127. Griscelli, C. et al. A syndrome associating partial albinism and immunodeficiency. Am. J. Med. 65, 691–702 (1978).

    Article  CAS  PubMed  Google Scholar 

  128. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Purtilo, D. T., Cassel, C. K., Yang, J. P. & Harper, R. X-linked recessive progressive combined variable immunodeficiency (Duncan's disease). Lancet 1, 935–940 (1975).

    Article  CAS  PubMed  Google Scholar 

  131. Dupre, L. et al. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood 105, 4383–4389 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Sumegi, J. et al. Correlation of mutations of the SH2D1A gene and Epstein–Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood 96, 3118–3125 (2000).

    CAS  PubMed  Google Scholar 

  133. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nature Genet. 20, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Arico, M. et al. Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene. Blood 97, 1131–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Latour, S. et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nature Cell Biol. 5, 149–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Pao, L. I. et al. Functional analysis of granzyme M and its role in immunity to infection. J. Immunol. 175, 3235–3243 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Watanabe, T. et al. A molecular genetic linkage map of mouse chromosome 19, including the lpr, Ly-44, and Tdt genes. Biochem. Genet. 29, 325–335 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA 96, 8627–8632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rieux-Laucat, F., Le Deist, F. & De Saint Basile, G. Autoimmune lymphoproliferative syndrome and perforin. N. Engl. J. Med. 352, 306–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Ericson, K. G. et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am. J. Hum. Genet. 68, 590–597 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.S. and J.A.T. are supported by senior fellowships and a program grant from the National Health and Medical Research Council of Australia. J.A.T. and I.V. are supported by a program grant from the Juvenile Diabetes Research Foundation. We also thank the many members of the Cancer Immunology Program and our collaborators for contributions over the years to many of the findings referred to in this Review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilia Voskoboinik or Joseph A. Trapani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Dianzani autoimmune lymphoproliferative disease

familial haemophagocytic lymphohistiocytosis

Glossary

Haemophagocytosis

The phagocytosis of erythrocytes that results from excessive activation of macrophages. This is usually a consequence of uncontrolled activation and proliferation of T cells.

Thrombocytopaenia

A reduced number of circulating platelets, owing to either the failure of production from bone-marrow megakaryocytes or increased clearance from the blood, predominantly in the spleen.

SET complex

A 270–420 kDa multiprotein complex that is associated with the endoplasmic reticulum. Pro-apoptotic granzyme A cleaves components of the SET complex, such as the nuclear assembly protein SET, the DNA-bending protein HMG2 and the base-excision repair pathway apurinic endonuclease APE1.

Ectromelia

A natural poxvirus pathogen of mice that is similar to variola virus (smallpox) in humans and vaccinia virus (cowpox) in cows. Cytotoxic T lymphocyes and natural killer cells from mice that are deficient in granzyme A and B or perforin are incapable of controlling primary infection with ectromelia virus.

Nonsense mutation

A mutation that results in the introduction of a stop codon to cause the premature termination of the protein.

Missense mutation

A mutation that results in the substitution of an amino acid in a protein.

SNARE

(Soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor). A complex formed between the vesicle and the target membrane, with which it is destined to fuse. t-(target membrane) SNAREs on target-membranes, and v-(vesicle-associated) SNAREs on transport vesicles cooperate with other proteins to allow docking and fusion of membranes.

Heterozygosity

The proportion of individuals in a population that carry two different alleles at a locus.

Hodgkin's lymphoma

A B-cell lymphoma that is characterized by the presence of Reed–Sternberg cells; it is observed in the lymph nodes, spleen, liver and bone marrow. It is more commonly diagnosed in younger people (median age 33 years).

Non-Hodgkin's lymphoma

A lymphocytic B- or T-cell lymphoma. This lymphoma is more common among older people (median age 65 years).

BCR–ABL

A tyrosine kinase oncogene. The Abelson leukaemia-virus protein (ABL) is fused with the breakpoint-cluster region (BCR) in the Philadelphia-chromosome translocation found in chronic myeloid leukaemia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voskoboinik, I., Smyth, M. & Trapani, J. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6, 940–952 (2006). https://doi.org/10.1038/nri1983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing