Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defensins in innate antiviral immunity

Key Points

  • This Review is an overview of mammalian defensins: classification and structure, cell sources and tissue distribution.

  • Viral infection induces expression of defensins. Defensins control viral infection by acting as direct effectors and immune modulators.

  • The molecular mechanisms of antiviral effects of defensins include direct effects on the virion and indirect effects on the target cells. The effect of defensins against enveloped and non-enveloped viruses is also summarized.

  • Polymorphisms of human defensin genes have been associated with increased susceptibility to diseases such as chronic obstructive pulmonary disease and asthma. Clinical aspects of defensins in viral pathogenesis are also discussed.

Abstract

Defensins are small antimicrobial peptides that are produced by leukocytes and epithelial cells, and that have an important role in innate immunity. Recent advances in understanding the mechanisms of the antiviral action(s) of defensins indicate that they have a dual role in antiviral defence, acting directly on the virion and on the host cell. This Review focuses on the antiviral activities and mechanisms of action of mammalian defensins, and on the clinical relevance of these activities. Understanding the complex function of defensins in innate immunity against viral infection has implications for the prevention and treatment of viral disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of defensin expression in response to viral infection at the mucosal epithelium.
Figure 2: Roles of defensins in mucosal immunity against HIV infection.
Figure 3: Mechanisms of antiviral activity by defensins.

Similar content being viewed by others

References

  1. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  2. Boman, H. G. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254, 197–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Bowie, A. G. & Haga, I. R. The role of Toll-like receptors in the host response to viruses. Mol. Immunol. 42, 859–867 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Chang, T. L. & Klotman, M. E. Defensins: natural anti-HIV peptides. AIDS Rev. 6, 161–168 (2004).

    PubMed  Google Scholar 

  5. Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75, 39–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Lehrer, R. I. Primate defensins. Nature Rev. Microbiol. 2, 727–738 (2004).

    Article  CAS  Google Scholar 

  7. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  8. Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J. & Oppenheim, J. J. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Daher, K. A., Selsted, M. E. & Lehrer, R. I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Selsted, M. E. & Ouellette, A. J. Mammalian defensins in the antimicrobial immune response. Nature Immunol. 6, 551–557 (2005).

    Article  CAS  Google Scholar 

  11. Tang, Y. Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Ganz, T. et al. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427–1435 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh, D. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nature Immunol. 3, 583–590 (2002).

    Article  CAS  Google Scholar 

  14. Porter, E. et al. Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect. Immun. 73, 4823–4833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leonova, L. et al. Circular minidefensins and posttranslational generation of molecular diversity. J. Leukoc. Biol. 70, 461–464 (2001).

    CAS  PubMed  Google Scholar 

  16. Tran, D. et al. Homodimeric θ-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem. 277, 3079–3084 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Maemoto, A. et al. Functional analysis of the α-defensin disulfide array in mouse cryptdin-4. J. Biol. Chem. 279, 44188–44196 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl Acad. Sci. USA 100, 8880–8885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mandal, M. & Nagaraj, R. Antibacterial activities and conformations of synthetic α-defensin HNP-1 and analogs with one, two and three disulfide bridges. J. Pept. Res. 59, 95–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, W., Cole, A. M., Hong, T., Waring, A. J. & Lehrer, R. I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 170, 4708–4716 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Selsted, M. E., Harwig, S. S., Ganz, T., Schilling, J. W. & Lehrer, R. I. Primary structures of three human neutrophil defensins. J. Clin. Invest. 76, 1436–1439 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilde, C. G., Griffith, J. E., Marra, M. N., Snable, J. L. & Scott, R. W. Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J. Biol. Chem. 264, 11200–11203 (1989).

    CAS  PubMed  Google Scholar 

  23. Agerberth, B. et al. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96, 3086–3093 (2000).

    CAS  PubMed  Google Scholar 

  24. Hein, M., Valore, E. V., Helmig, R. B., Uldbjerg, N. & Ganz, T. Antimicrobial factors in the cervical mucus plug. Am. J. Obstet. Gynecol. 187, 137–144 (2002).

    Article  PubMed  Google Scholar 

  25. Fellermann, K. & Stange, E. F. Defensins — innate immunity at the epithelial frontier. Eur. J. Gastroenterol. Hepatol. 13, 771–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Cunliffe, R. N. α-Defensins in the gastrointestinal tract. Mol. Immunol. 40, 463–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ganz, T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect. Immun. 55, 568–571 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mackewicz, C. E. et al. α-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17, F23–F32 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zaharatos, G. J. et al. α-Defensins released into stimulated CD8+ T-cell supernatants are likely derived from residual granulocytes within the irradiated allogeneic peripheral blood mononuclear cells used as feeders. J. Acquir. Immune Defic. Syndr. 36, 993–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Fahlgren, A., Hammarstrom, S., Danielsson, A. & Hammarstrom, M. L. Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin. Exp. Immunol. 131, 90–101 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Svinarich, D. M., Wolf, N. A., Gomez, R., Gonik, B. & Romero, R. Detection of human defensin 5 in reproductive tissues. Am. J. Obstet. Gynecol. 176, 470–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Quayle, A. J. et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am. J. Pathol. 152, 1247–1258 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schutte, B. C. et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl Acad. Sci. USA 99, 2129–2133 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Proud, D., Sanders, S. P. & Wiehler, S. Human rhinovirus infection induces airway epithelial cell production of human β-defensin 2 both in vitro and in vivo. J. Immunol. 172, 4637–4645 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Duits, L. A. et al. Rhinovirus increases human β-defensin-2 and -3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol. Med. Microbiol. 38, 59–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, D., Chertov, O. & Oppenheim, J. J. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69, 691–697 (2001).

    CAS  PubMed  Google Scholar 

  37. Sorensen, O. E. et al. Differential regulation of β-defensin expression in human skin by microbial stimuli. J. Immunol. 174, 4870–4879 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707–5713 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Garcia, J. R. et al. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 306, 257–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Duits, L. A., Ravensbergen, B., Rademaker, M., Hiemstra, P. S. & Nibbering, P. H. Expression of β-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106, 517–525 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Armogida, S. A., Yannaras, N. M., Melton, A. L. & Srivastava, M. D. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc. 25, 297–304 (2004).

    CAS  PubMed  Google Scholar 

  42. Jia, H. P. et al. Abundant human β-defensin-1 expression in milk and mammary gland epithelium. J. Pediatr. 138, 109–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Garcia, J. R. et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi, Y. et al. Identification of multiple novel epididymis-specific β-defensin isoforms in humans and mice. J. Immunol. 169, 2516–2523 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen, T. X., Cole, A. M. & Lehrer, R. I. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides 24, 1647–1654 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Cole, A. M. et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl Acad. Sci. USA 99, 1813–1818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quinones-Mateu, M. E. et al. Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17, F39–F48 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Schaefer, T. M., Fahey, J. V., Wright, J. A. & Wira, C. R. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J. Immunol. 174, 992–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Nagy, I. et al. Distinct strains of Propionibacterium acnes induce selective human β-defensin-2 and interleukin-8 expression in human keratinocytes through Toll-like receptors. J. Invest. Dermatol. 124, 931–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Pivarcsi, A. et al. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human β-defensin-2 in vaginal epithelial cells. Microbes Infect. 7, 1117–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Chalifour, A. et al. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production. Blood 104, 1778–1783 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, D. et al. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Niyonsaba, F., Hirata, M., Ogawa, H. & Nagaoka, I. Epithelial cell-derived antibacterial peptides human β-defensins and cathelicidin: multifunctional activities on mast cells. Curr. Drug Targets Inflamm. Allergy 2, 224–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, D., Chen, Q., Chertov, O. & Oppenheim, J. J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 68, 9–14 (2000).

    CAS  PubMed  Google Scholar 

  57. Chertov, O. et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kougias, P. et al. Defensins and cathelicidins: neutrophil peptides with roles in inflammation, hyperlipidemia and atherosclerosis. J. Cell. Mol. Med. 9, 3–10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh, A. et al. Structure of a novel human granulocyte peptide with anti-ACTH activity. Biochem. Biophys. Res. Commun. 155, 524–529 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Higazi, A. A. et al. The α-defensins stimulate proteoglycan-dependent catabolism of low-density lipoprotein by vascular cells: a new class of inflammatory apolipoprotein and a possible contributor to atherogenesis. Blood 96, 1393–1398 (2000).

    CAS  PubMed  Google Scholar 

  61. Higazi, A. A., Ganz, T., Kariko, K. & Cines, D. B. Defensin modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelial cells. J. Biol. Chem. 271, 17650–17655 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Nassar, T. et al. Human α-defensin regulates smooth muscle cell contraction: a role for low-density lipoprotein receptor-related protein/α2-macroglobulin receptor. Blood 100, 4026–4032 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Charp, P. A. et al. Inhibition of protein kinase C by defensins, antibiotic peptides from human neutrophils. Biochem. Pharmacol. 37, 951–956 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Chang, T. L., Vargas, J. Jr, DelPortillo, A. & Klotman, M. E. Dual role of α-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest. 115, 765–773 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hristova, K., Selsted, M. E. & White, S. H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272, 24224–24233 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Okrent, D. G., Lichtenstein, A. K. & Ganz, T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am. Rev. Respir. Dis. 141, 179–185 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Van Wetering, S., Mannesse-Lazeroms, S. P., Dijkman, J. H. & Hiemstra, P. S. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J. Leukoc. Biol. 62, 217–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Nakashima, H., Yamamoto, N., Masuda, M. & Fujii, N. Defensins inhibit HIV replication in vitro. AIDS 7, 1129 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, L. et al. Contribution of human α-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Chang, T. L., Francois, F., Mosoian, A. & Klotman, M. E. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from α-defensin-1 HIV inhibition. J. Virol. 77, 6777–6784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, Z. et al. Human neutrophil α-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett. 579, 162–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Territo, M. C., Ganz, T., Selsted, M. E. & Lehrer, R. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 84, 2017–2020 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, W. et al. Activity of α- and θ-defensins against primary isolates of HIV-1. J. Immunol. 173, 515–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Guo, C. J., Tan, N., Song, L., Douglas, S. D. & Ho, W. Z. α-defensins inhibit HIV infection of macrophages through upregulation of CC-chemokines. AIDS 18, 1217–1218 (2004).

    Article  PubMed  Google Scholar 

  76. Jan, M. S. et al. CC chemokines induce neutrophils to chemotaxis, degranulation, and α-defensin release. J. Acquir. Immune Defic. Syndr. 41, 6–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Tanabe, H., Ouellette, A. J., Cocco, M. J. & Robinson, W. E. Jr. Differential effects on human immunodeficiency virus type 1 replication by α-defensins with comparable bactericidal activities. J. Virol. 78, 11622–11631 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun, L. et al. Human β-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol. 79, 14318–14329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Munk, C. et al. The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses 19, 875–881 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, S. Z. et al. The apoptosis of neutrophils is accelerated in respiratory syncytial virus (RSV)-induced bronchiolitis. Clin. Exp. Immunol. 114, 49–54 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leikina, E. et al. Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nature Immunol. 6, 995–1001 (2005).

    Article  CAS  Google Scholar 

  82. Owen, S. M. et al. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses 20, 1157–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Sinha, S., Cheshenko, N., Lehrer, R. I. & Herold, B. C. NP-1, a rabbit α-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob. Agents Chemother. 47, 494–500 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasin, B. et al. θ-Defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grubor, B. et al. Enhanced surfactant protein and defensin mRNA levels and reduced viral replication during parainfluenza virus type 3 pneumonia in neonatal lambs. Clin. Diagn. Lab. Immunol. 11, 599–607 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Meyerholz, D. K. et al. Adenovirus-mediated gene therapy enhances parainfluenza virus 3 infection in neonatal lambs. J. Clin. Microbiol. 42, 4780–4787 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buck, C. B. et al. Human α-defensins block papillomavirus infection. Proc. Natl Acad. Sci. USA 103, 1516–1521 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bastian, A. & Schafer, H. Human α-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept. 101, 157–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Gonzalez, E. et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc. Natl Acad. Sci. USA 99, 13795–13800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hogan, C. M. & Hammer, S. M. Host determinants in HIV infection and disease. Part 2: genetic factors and implications for antiretroviral therapeutics. Ann. Intern. Med. 134, 978–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Kaslow, R. A., Dorak, T. & Tang, J. J. Influence of host genetic variation on susceptibility to HIV type 1 infection. J. Infect. Dis. 191 (Suppl. 1), S68–S77 (2005).

    Article  PubMed  Google Scholar 

  93. Mars, W. M. et al. Inheritance of unequal numbers of the genes encoding the human neutrophil defensins HP-1 and HP-3. J. Biol. Chem. 270, 30371–30376 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Aldred, P. M., Hollox, E. J. & Armour, J. A. Copy number polymorphism and expression level variation of the human α-defensin genes DEFA1 and DEFA3. Hum. Mol. Genet. 14, 2045–2052 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Hollox, E. J., Armour, J. A. & Barber, J. C. Extensive normal copy number variation of a β-defensin antimicrobial-gene cluster. Am. J. Hum. Genet. 73, 591–600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Matsushita, I. et al. Genetic variants of human β-defensin-1 and chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 291, 17–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Salvatore, F., Scudiero, O. & Castaldo, G. Genotype-phenotype correlation in cystic fibrosis: the role of modifier genes. Am. J. Med. Genet. 111, 88–95 (2002).

    Article  PubMed  Google Scholar 

  98. Vankeerberghen, A. et al. Distribution of human β-defensin polymorphisms in various control and cystic fibrosis populations. Genomics 85, 574–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Levy, H. et al. Association of defensin β-1 gene polymorphisms with asthma. J. Allergy Clin. Immunol. 115, 252–258 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dork, T. & Stuhrmann, M. Polymorphisms of the human β-defensin-1 gene. Mol. Cell Probes 12, 171–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Message, S. D. & Johnston, S. L. Host defense function of the airway epithelium in health and disease: clinical background. J. Leukoc. Biol. 75, 5–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Braida, L. et al. A single-nucleotide polymorphism in the human β-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS 18, 1598–1600 (2004).

    Article  PubMed  Google Scholar 

  103. Yang, C. et al. θ-Defensin pseudogenes in HIV-1-exposed, persistently seronegative female sex-workers from Thailand. Infect. Genet. Evol. 5, 11–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Trabattoni, D. et al. Human α defensin in HIV-exposed but uninfected individuals. J. Acquir. Immune Defic. Syndr. 35, 455–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Kuhn, L. et al. α-Defensins in the prevention of HIV transmission among breastfed infants. J. Acquir. Immune Defic. Syndr. 39, 138–142 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Folkvord, J. M., Armon, C. & Connick, E. Lymphoid follicles are sites of heightened human immunodeficiency virus type 1 (HIV-1) replication and reduced antiretroviral effector mechanisms. AIDS Res. Hum. Retroviruses 21, 363–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Howell, M. D. et al. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol. 172, 1763–1767 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Robinson, W. E. Jr, McDougall, B., Tran, D. & Selsted, M. E. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63, 94–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Lorin, C. et al. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334, 264–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. VanCompernolle, S. E. et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol. 79, 11598–11606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gallo, S. A. et al. θ-Defensins prevent HIV-1 env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. J. Biol. Chem. 28 Apr 2006 (doi:10.1074/jbc.M602422200).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Klotman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

HIV-1

HSV1

FURTHER INFORMATION

Influenza Virus Resource

Mary Klotman's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotman, M., Chang, T. Defensins in innate antiviral immunity. Nat Rev Immunol 6, 447–456 (2006). https://doi.org/10.1038/nri1860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing