Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The SIRP family of receptors and immune regulation

Key Points

  • The signal-regulatory proteins (SIRPs) can be classed as paired receptors, the most well known of which include the killer-cell immunoglobulin-like receptors, which are expressed by natural killer cells.

  • The SIRP family contains activating, inhibitory and non-signalling members, which have closely related extracellular regions but distinct cytoplasmic tails. They are expressed mainly by myeloid cells and are therefore thought to have a role in immune regulation.

  • Two types of ligand for the inhibitory member, SIRPα, have been identified: the widely expressed cell-surface protein CD47 and surfactant protein A.

  • A third SIRP-family member, SIRPγ, transmits neither activating nor inhibitory signals even though it binds CD47.

  • Like other paired receptors, the SIRPs show evidence of rapid evolution with considerable species differences and polymorphisms.

  • Factors such as ligand availability, binding affinity, protein mobility and expression levels are likely to affect their function in vivo.

Abstract

The immune system must be highly regulated to obtain optimal immune responses for the elimination of pathogens without causing undue side effects. This tight regulation involves complex interactions between membrane proteins on leukocytes. Members of the signal-regulatory protein (SIRP) family, which are expressed mainly by myeloid cells, provide one example of these regulatory membrane proteins. There are three SIRP-family genes that encode proteins that have similar extracellular regions but different signalling potentials, and are therefore known as 'paired receptors'. In this Review, we describe recent studies defining the ligands of the SIRP-family members, with particular emphasis on relating the molecular interactions of these proteins to their role in immune-cell regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of members of the signal-regulatory protein family.
Figure 2: The topology of interactions between an antigen-presenting cell and a T cell.

Similar content being viewed by others

References

  1. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    CAS  PubMed  Google Scholar 

  2. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kawakami, N. et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201, 1805–1814 (2005). The first identification of live trafficking of T cells at a site of inflammation using elegant imaging techniques.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fujioka, Y. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell. Biol. 16, 6887–6899 (1996). The first identification of SIRPα at the primary sequence level and its association with a phosphatase.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kharitonenkov, A. et al. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 386, 181–186 (1997).

    CAS  PubMed  Google Scholar 

  6. Ohnishi, H., Kubota, M., Ohtake, A., Sato, K. & Sano, S. Activation of protein-tyrosine phosphatase SH-PTP2 by a tyrosine-based activation motif of a novel brain molecule. J. Biol. Chem. 271, 25569–25574 (1996).

    CAS  PubMed  Google Scholar 

  7. Veillette, A., Thibaudeau, E. & Latour, S. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. J. Biol. Chem. 273, 22719–22728 (1998).

    CAS  PubMed  Google Scholar 

  8. Seiffert, M. et al. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38 hematopoietic cells. Blood 97, 2741–2749 (2001). The first evidence that CD47 does not bind SIRPβ.

    CAS  PubMed  Google Scholar 

  9. Ichigotani, Y. et al. Molecular cloning of a novel human gene (SIRP-B2) which encodes a new member of the SIRP/SHPS-1 protein family. J. Human Gen. 45, 378–382 (2000).

    CAS  Google Scholar 

  10. Dietrich, J., Cella, M., Seiffert, M., Buhring, H. J. & Colonna, M. Cutting edge: signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164, 9–12 (2000).

    CAS  PubMed  Google Scholar 

  11. Tomasello, E. et al. Association of signal-regulatory proteins β with KARAP/DAP-12. Eur. J. Immunol. 30, 2147–2156 (2000).

    CAS  PubMed  Google Scholar 

  12. Tomasello, E. & Vivier, E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur. J. Immunol. 35, 1670–1677 (2005).

    CAS  PubMed  Google Scholar 

  13. Lanier, L. L. & Bakker, A. B. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today 21, 611–614 (2000).

    CAS  PubMed  Google Scholar 

  14. Liu, Y. et al. SIRPβ1 is expressed as a disulfide linked homodimer in leukocytes and positively regulates neutrophil transepithelial migration. J. Biol. Chem. 280, 36132–36140 (2005). This paper shows that SIRPβ is a dimer, and the presence of intracellular pools of SIRPα.

    CAS  PubMed  Google Scholar 

  15. Brooke, G., Holbrook, J. D., Brown, M. H. & Barclay, A. N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol. 173, 2562–2570 (2004). Characterization of CD47 as a low-affinity ligand of SIRPγ.

    CAS  PubMed  Google Scholar 

  16. Piccio, L. et al. Adhesion of human T cells to antigen-presenting cells through SIRPβ2–CD47 interaction costimulates T-cell proliferation. Blood 105, 2421–2427 (2005). Functional effects of SIRPγ in T-cell adhesion through CD47.

    CAS  PubMed  Google Scholar 

  17. van Beek, E. M., Cochrane, F., Barclay, A. N. & van den Berg, T. K. Signal regulatory proteins in the immune system. J. Immunol. 175, 7781–7787 (2005).

    CAS  PubMed  Google Scholar 

  18. Sano, S., Ohnishi, H. & Kubota, M. Gene structure of mouse BIT/SHPS-1. Biochem. J. 344, 667–675 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van den Berg, T. K., Yoder, J. A. & Litman, G. W. On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol. 25, 11–16 (2004). Review of the function and origins of SIRPs.

    CAS  PubMed  Google Scholar 

  20. Jiang, P., Lagenaur, C. F. & Narayanan, V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274, 559–562 (1999). First identification of CD47 as a ligand for SIRPα expressed in the brain.

    CAS  PubMed  Google Scholar 

  21. Seiffert, M. et al. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood 94, 3633–3643 (1999).

    CAS  PubMed  Google Scholar 

  22. Vernon-Wilson, E. F. et al. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPα1. Eur. J. Immunol. 30, 2130–2137 (2000).

    CAS  PubMed  Google Scholar 

  23. Latour, S. et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167, 2547–2554 (2001).

    CAS  PubMed  Google Scholar 

  24. Manna, P. P. & Frazier, W. A. The mechanism of CD47-dependent killing of T cells: heterotrimeric Gi-dependent inhibition of protein kinase A. J. Immunol. 170, 3544–3553 (2003).

    CAS  PubMed  Google Scholar 

  25. Brown, E. J. & Frazier, W. A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001). Comprehensive review of CD47.

    CAS  PubMed  Google Scholar 

  26. Gardai, S. J. et al. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115, 13–23 (2003). This paper shows that alveolar macrophages bind strongly to collectins through SIRPα.

    CAS  PubMed  Google Scholar 

  27. Yamao, T. et al. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J. Biol. Chem. 277, 39833–39839 (2002).

    CAS  PubMed  Google Scholar 

  28. Okazawa, H. et al. Negative regulation of phagocytosis in macrophages by the CD47–SHPS-1 system. J. Immunol. 174, 2004–2011 (2005).

    CAS  PubMed  Google Scholar 

  29. Smith, R. E. et al. A novel MyD-1 (SIRP-1α) signaling pathway that inhibits LPS-induced TNFα production by monocytes. Blood 102, 2532–2540 (2003).

    CAS  PubMed  Google Scholar 

  30. Liu, Y. et al. Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277, 10028–10036 (2002).

    CAS  PubMed  Google Scholar 

  31. Inagaki, K. et al. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J. 19, 6721–6731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oshima, K., Ruhul Amin, A. R., Suzuki, A., Hamaguchi, M. & Matsuda, S. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett. 519, 1–7 (2002). Review on SIRPα with comprehensive analysis of functional data.

    CAS  PubMed  Google Scholar 

  33. Timms, J. F. et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr. Biol. 9, 927–930 (1999).

    CAS  PubMed  Google Scholar 

  34. Alblas, J. et al. Signal regulatory protein α ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol. Cell. Biol. 25, 7181–7192 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindberg, F. P. et al. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274, 795–798 (1996).

    CAS  PubMed  Google Scholar 

  36. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    CAS  PubMed  Google Scholar 

  37. Ishikawa-Sekigami, T. et al. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 107, 341–348 (2006).

    CAS  PubMed  Google Scholar 

  38. McVicar, D. W. et al. DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J. Biol. Chem. 273, 32934–32942 (1998).

    CAS  PubMed  Google Scholar 

  39. Hayashi, A. et al. Positive regulation of phagocytosis by SIRPβ and its signaling mechanism in macrophages. J. Biol. Chem. 279, 29450–29460 (2004).

    CAS  PubMed  Google Scholar 

  40. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    CAS  PubMed  Google Scholar 

  41. Vales-Gomez, M., Reyburn, H. T., Erskine, R. A. & Strominger, J. Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc. Natl Acad. Sci. USA 95, 14326–14331 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    CAS  PubMed  Google Scholar 

  43. Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor–ligand complex. J. Exp. Med. 190, 31–41 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide–MHC ligand. Nature 436, 578–582 (2005).

    CAS  PubMed  Google Scholar 

  45. Barclay, A. N. et al. Leucocyte Antigens Factsbook 2nd edn (Academic Press, London, 1997). Reviews the concepts about domain organization, size and affinity of interactions of leukocyte membrane proteins.

    Google Scholar 

  46. Wright, G. J. et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13, 233–242 (2000).

    CAS  PubMed  Google Scholar 

  47. Ohnishi, H. et al. Differential localization of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 and CD47 and its molecular mechanisms in cultured hippocampal neurons. J. Neurosci. 25, 2702–2711 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mi, Z. P. et al. Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J. Comp. Neurol. 416, 335–344 (2000).

    CAS  PubMed  Google Scholar 

  49. Rebres, R. A., Vaz, L. E., Green, J. M. & Brown, E. J. Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J. Biol. Chem. 276, 34607–34616 (2001).

    CAS  PubMed  Google Scholar 

  50. Jimenez, D., Roda-Navarro, P., Springer, T. A. & Casasnovas, J. M. Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs). J. Biol. Chem. 280, 5854–5861 (2005).

    CAS  PubMed  Google Scholar 

  51. Ogura, T. et al. Resistance of B16 melanoma cells to CD47-induced negative regulation of motility as a result of aberrant N-glycosylation of SHPS-1. J. Biol. Chem. 279, 13711–13720 (2004).

    CAS  PubMed  Google Scholar 

  52. LeVine, A. M. et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165, 3934–3940 (2000).

    CAS  PubMed  Google Scholar 

  53. van der Merwe, P. A. & Davis, S. J. Molecular interactions mediating T cell ntigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    CAS  PubMed  Google Scholar 

  54. van der Merwe, P. A. & Barclay, A. N. Analysis of cell-adhesion molecule interactions using surface plasmon resonance. Curr. Opin. Immunol. 8, 257–261 (1996).

    CAS  PubMed  Google Scholar 

  55. Foster-Cuevas, M., Wright, G. J., Puklavec, M. J. & Barclay, A. N. Human herpesvirus-8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J. Virol. 78, 7667–7676 (2004). This paper shows that a viral homologue of CD200 can downmodulate the activity of activated macrophages through an inhibitory receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Collins, A. V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    CAS  PubMed  Google Scholar 

  57. Dustin, M. L. et al. Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J. Biol. Chem. 272, 30889–30898 (1997).

    CAS  PubMed  Google Scholar 

  58. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Koch, C. et al. T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int. Immunol. 11, 777–786 (1999).

    CAS  PubMed  Google Scholar 

  60. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002). Key finding that the presence of activating and inhibitory Ly49 receptors can dictate resistance versus susceptibility to virus infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002). This paper shows that the interaction of activating and inhibitory Ly49 proteins with a viral protein is the basis of strain susceptibility to MCMV.

    CAS  PubMed  Google Scholar 

  62. Smith, K. M., Wu, J., Bakker, A. B., Phillips, J. H. & Lanier, L. L. Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).

    CAS  PubMed  Google Scholar 

  63. Bubic, I. et al. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J. Virol. 78, 7536–7544 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sano, S., Ohnishi, H., Omori, A., Hasegawa, J. & Kubota, M. BIT, an immune antigen receptor-like molecule in the brain. FEBS Lett. 411, 327–334 (1997).

    CAS  PubMed  Google Scholar 

  65. Koshimizu, H. et al. Expression of CD47/integrin-associated protein induces death of cultured cerebral cortical neurons. J. Neurochem. 82, 249–257 (2002).

    CAS  PubMed  Google Scholar 

  66. Miyashita, M. et al. Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol. Biol. Cell 15, 3950–3963 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams, A. F. & Barclay, A. N. The immunoglobulin superfamily — domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405 (1988).

    CAS  PubMed  Google Scholar 

  68. Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23, 285–290 (2002).

    CAS  PubMed  Google Scholar 

  69. Wright, G. J. et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 171, 3034–3046 (2003).

    CAS  PubMed  Google Scholar 

  70. Voehringer, D., Rosen, D. B., Lanier, L. L. & Locksley, R. M. CD200 receptor family members represent novel DAP12-associated activating receptors on basophils and mast cells. J. Biol. Chem. 279, 54117–54123 (2004).

    CAS  PubMed  Google Scholar 

  71. Cameron, C. M., Barrett, J. W., Mann, M., Lucas, A. & McFadden, G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology 337, 55–67 (2005).

    CAS  PubMed  Google Scholar 

  72. Cameron, C. M., Barrett, J. W., Liu, L., Lucas, A. R. & McFadden, G. Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J. Virol. 79, 6052–6067 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. van den Berg, T. K. et al. A nomenclature for signal regulatory protein family members. J. Immunol. 175, 7788–7789 (2005).

    CAS  PubMed  Google Scholar 

  74. Shiratori, I., Ogasawara, K., Saito, T., Lanier, L. L. & Arase, H. Activation of natural killer cells and dendritic cells upon recognition of a novel CD99-like ligand by paired immunoglobulin-like type 2 receptor. J. Exp. Med. 199, 525–533 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Allen, R. L., Raine, T., Haude, A., Trowsdale, J. & Wilson, M. J. Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J. Immunol. 167, 5543–5547 (2001).

    CAS  PubMed  Google Scholar 

  76. Borges, L. & Cosman, D. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev. 11, 209–217 (2000).

    CAS  PubMed  Google Scholar 

  77. Aguilar, H. et al. Molecular characterization of a novel immune receptor restricted to the monocytic lineage. J. Immunol. 173, 6703–6711 (2004).

    CAS  PubMed  Google Scholar 

  78. Chung, D. H. et al. CMRF-35-like molecule-1, a novel mouse myeloid receptor, can inhibit osteoclast formation. J. Immunol. 171, 6541–6548 (2003).

    CAS  PubMed  Google Scholar 

  79. Clark, G. J., Green, B. J. & Hart, D. N. The CMRF-35H gene structure predicts for an independently expressed member of an ITIM/ITAM pair of molecules localized to human chromosome 17. Tissue Antigens 55, 101–109 (2000).

    CAS  PubMed  Google Scholar 

  80. Bates, E. E. et al. APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J. Immunol. 163, 1973–1983 (1999).

    CAS  PubMed  Google Scholar 

  81. Kanazawa, N., Tashiro, K., Inaba, K. & Miyachi, Y. Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an activating receptor through association with Fc receptor γ chain. J. Biol. Chem. 278, 32645–32652 (2003).

    CAS  PubMed  Google Scholar 

  82. Kanazawa, N., Tashiro, K. & Miyachi, Y. Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2. Immunobiology 209, 179–190 (2004). Extensive review of paired receptors on dendritic cells.

    CAS  PubMed  Google Scholar 

  83. Hatherley, D., Cherwinski, H. M., Moshref, M. & Barclay, A. N. Recombinant CD200 protein does not bind activating proteins closely related to CD200 receptor. J. Immunol. 175, 2469–2474 (2005).

    CAS  PubMed  Google Scholar 

  84. Dietrich, J., Nakajima, H. & Colonna, M. Human inhibitory and activating Ig-like receptors which modulate the function of myeloid cells. Microbes Infect. 2, 323–329 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neil Barclay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Immunological synapse

A region that can form between two cells of the immune system that are in close contact, so named because of its similarities to the synapses that occur in the nervous system. The immunological synapse originally referred to the interaction between a T cell and an antigen-presenting cell, but it is now known to form between other types of immune cell, for example, between dendritic cells and natural killer cells. It involves adhesion molecules, as well as antigen receptors and cytokine receptors.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). A short peptide motif that contains tyrosine residues and is found in the cytoplasmic tails of several inhibitory receptors. The prototype six-amino-acid ITIM sequence is (I/V/L/S)XYXX(L/V), with X denoting any amino acid. Ligand-induced clustering of these inhibitory receptors results in tyrosine phosphorylation, often by SRC-family protein tyrosine kinases, and this provides a docking site for the recruitment of cytoplasmic phosphatases that have an SRC homology 2 (SH2) domain.

Immunoglobulin superfamily domain

(IgSF domain). This domain type shows sequence similarity to domains present in immunoglobulins and is the most common domain type of leukocyte surface proteins.

Domain

Region of a protein that forms a discrete fold. The extracellular regions of leukocyte surface proteins contain several common domain types, such as immunoglobulin superfamily and C-type lectin domains.

Immunoreceptor tyrosine-based activation motif

(ITAM). A short peptide motif containing tyrosine residues that is found in the cytoplasmic tails of several signalling molecules. The amino-acid sequence of an ITAM is (D/E)XXYXX(L/I)X6–8YXX(L/I), with X denoting any amino acid. It is tyrosine phosphorylated after engagement of the ligand-binding subunits, which triggers a cascade of intracellular events that results in cellular activation.

Polymorphic

In population genetics, this term refers to genes that, in a population, have many alleles.

Collectin

C-type lectins that have a collagen-like domain are known as collectins. One group of collectins, the secreted lectins, consists of mannose-binding lectin (MBL), bovine conglutinin and collectin-43 (CL43) in blood and the two mucosal-associated proteins surfactant protein A (SP-A) and SP-D. The other group of collectins consists of the newly discovered, non-secreted-type collectin liver 1 (CLL1) and membrane-type collectin placenta 1 (CLP1).

Erythropoiesis

The differentiation process leading from a committed erythroid precursor to the production of mature red blood cells (erythrocytes).

Thrombocytopaenia

A reduced number of circulating platelets, owing to either the failure of production from bone-marrow megakaryocytes or increased clearance from the circulation, predominantly in the spleen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barclay, A., Brown, M. The SIRP family of receptors and immune regulation. Nat Rev Immunol 6, 457–464 (2006). https://doi.org/10.1038/nri1859

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing