Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From stem cell to T cell: one route or many?

An Erratum to this article was published on 01 March 2006

Key Points

  • The adult thymus requires input from haematopoietic progenitors in the bone marrow to maintain T-cell development. These progenitors colonize the thymus through the blood.

  • Models suggesting that T cells are uniquely derived from common lymphoid progenitors (CLPs) are likely to be inadequate. Instead, multiple bone-marrow progenitors are T-cell-lineage competent, and might contribute to intrathymic T-cell development.

  • Early T-cell progenitors (ETPs) in the adult thymus can be minimally defined as lineage (Lin)lowCD25KIThi. However, differential expression of CD24, enhanced green fluorescent protein (EGFP) in reporter mice in which EGFP expression is controlled from the CC-chemokine receptor 9 (Ccr9) locus (CCR9–EGFP), and fms-related tyrosine kinase 3 (FLT3) by the ETP population indicates further heterogeneity.

  • The developmental potential of FLT3+ETPs and CCRP–EGFPhi ETPs indicates that these cells are developmentally early ETPs, and that thymus-settling cells express FLT3 and CCR9.

  • Haematopoietic stem cells (HSCs) and FLT3-expressing multipotential progenitors (MPPs) are present in the blood, and so are available to settle in the thymus. MPPs are likely to contain physiologically relevant thymus-settling progenitors.

  • The ability of T-cell-lineage-competent haematopoietic progenitors to contribute to the T-cell lineage depends on their ability to leave the bone marrow and to migrate to and settle in the thymus, as well as on their ability to expand after thymus settling. It does not depend on their degree of prethymic restriction to the T-cell lineage.

  • Important goals for the future include identifying the signals required for the migration of bone-marrow progenitors to the thymus, and determining the contribution of different bone-marrow progenitors to early T-cell-progenitor populations. Whether different progenitors dominate at different developmental stages or in different circumstances, and why, are important unanswered questions in the field.

Abstract

T cells developing in the adult thymus ultimately derive from haematopoietic stem cells in the bone marrow. Here, we summarize research into the identity of the haematopoietic progenitors that leave the bone marrow, migrate through the blood and settle in the thymus to generate T cells. Accumulating data indicate that various different bone-marrow progenitors are T-cell-lineage competent and might contribute to intrathymic T-cell development. Such developmental flexibility implies a mechanism of T-cell-lineage commitment that can operate on a range of T-cell-lineage-competent progenitors, and further indicates that only those T-cell-lineage-competent progenitors able to migrate to, and settle in, the thymus should be considered physiological T-cell progenitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical model of haematopoiesis.
Figure 2: Immature thymocyte progenitor subsets.
Figure 3: Pathways connecting the bone marrow and the thymus.

Similar content being viewed by others

References

  1. Miller, J. F. & Osoba, D. Current concepts of the immunological function of the thymus. Physiol. Rev. 47, 437–520 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Goldschneider, I., Komschlies, K. L. & Greiner, D. L. Studies of thymocytopoiesis in rats and mice. I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors. J. Exp. Med. 163, 1–17 (1986).

    CAS  PubMed  Google Scholar 

  3. Scollay, R., Smith, J. & Stauffer, V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol. Rev. 91, 129–157 (1986).

    CAS  PubMed  Google Scholar 

  4. Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol. 148, 1604–1612 (1992).

    CAS  PubMed  Google Scholar 

  5. Micklem, H. S., Ogden, D. A., Evans, E. P., Ford, C. E. & Gray, J. G. Compartments and cell flows within the mouse haemopoietic system. II. Estimated rates of interchange. Cell Tissue Kinet. 8, 233–248 (1975).

    CAS  PubMed  Google Scholar 

  6. Wallis, V. J., Leuchars, E., Chwalinski, S. & Davies, A. J. On the sparse seeding of bone marrow and thymus in radiation chimaeras. Transplantation 19, 2–11 (1975).

    CAS  PubMed  Google Scholar 

  7. Kadish, J. L. & Basch R. S. Hematopoietic thymocyte precursors. I. Assay and kinetics of the appearance of progeny. J. Exp. Med. 143, 1082–1099 (1976).

    CAS  PubMed  Google Scholar 

  8. Spangrude, G. J. & Scollay, R. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny. J. Immunol. 145, 3661–3668 (1990).

    CAS  PubMed  Google Scholar 

  9. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    CAS  PubMed  Google Scholar 

  10. Goodman, J. W. & Hodgson, G. S. Evidence for stem cells in the peripheral blood of mice. Blood 19, 702–714 (1962).

    CAS  PubMed  Google Scholar 

  11. Shortman, K. & Wu, L. Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47 (1996).

    CAS  PubMed  Google Scholar 

  12. Schwarz, B. A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nature Immunol. 5, 953–960 (2004). This paper shows that, in addition to HSCs, MPPs circulate in the blood. These circulating MPPs include L-selectin-expressing cells and the early lymphoid progenitor subset, which have been shown by others to be efficient T-cell progenitors.

    CAS  Google Scholar 

  13. Kondo, M., Scherer, D. C., King, A. G., Manz, M. G. & Weissman, I. L. Lymphocyte development from hematopoietic stem cells. Curr. Opin. Genet. Dev. 11, 520–526 (2001).

    CAS  PubMed  Google Scholar 

  14. Warren, L. A. & Rothenberg, E. V. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Curr. Opin. Immunol. 15, 166–175 (2003).

    CAS  PubMed  Google Scholar 

  15. Baba, Y., Pelayo, R. & Kincade, P. W. Relationships between hematopoietic stem cells and lymphocyte progenitors. Trends Immunol. 25, 645–649 (2004).

    CAS  PubMed  Google Scholar 

  16. Rothenberg, E. V. & Taghon, T. Molecular genetics of T cell development. Annu. Rev. Immunol. 23, 601–649 (2005).

    CAS  PubMed  Google Scholar 

  17. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    CAS  PubMed  Google Scholar 

  18. Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502–1506 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    CAS  PubMed  Google Scholar 

  20. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  PubMed  Google Scholar 

  22. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997). These authors first identified and characterized CLPs from the bone marrow, and showed that single cells in this population have B- and T-cell lineage potential.

    CAS  PubMed  Google Scholar 

  23. Izon, D. et al. A common pathway for dendritic cell and early B cell development. J. Immunol. 167, 1387–1392 (2001).

    CAS  PubMed  Google Scholar 

  24. Miller, J. P. et al. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med. 196, 705–711 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nature Immunol. 4, 168–174 (2003).

    CAS  Google Scholar 

  26. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    CAS  PubMed  Google Scholar 

  27. Martin, C. H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nature Immunol. 4, 866–873 (2003). Using a transgenic mouse that expresses human CD25 as a reporter under the control of locus control elements from the gene encoding pTα these authors identified B220+ CLP-2s in the bone marrow and showed that these CLP-2s are very efficient at homing to the thymus.

    CAS  Google Scholar 

  28. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    CAS  PubMed  Google Scholar 

  29. Hardy, R. R. B-cell commitment: deciding on the players. Curr. Opin. Immunol. 15, 158–165 (2003).

    CAS  PubMed  Google Scholar 

  30. Tudor, K. S., Payne, K. J., Yamashita, Y. & Kincade, P. W. Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events. Immunity 12, 335–345 (2000).

    CAS  PubMed  Google Scholar 

  31. Kikuchi, K., Lai, A. Y., Hsu, C. L. & Kondo, M. IL-7 receptor signalling is necessary for stage transition in adult B cell development through upregulation of EBF. J. Exp. Med. 201, 1197–1203 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pearse, M. et al. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin 2 receptor. Proc. Natl Acad. Sci. USA 86, 1614–1618 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  34. Godfrey, D. I., Kennedy, J., Mombaerts, P., Tonegawa, S. & Zlotnik, A. Onset of TCR-β gene rearrangement and role of TCR-β expression during CD3CD4CD8 thymocyte differentiation. J. Immunol. 152, 4783–4792 (1994).

    CAS  PubMed  Google Scholar 

  35. Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    CAS  PubMed  Google Scholar 

  36. Matsuzaki, Y. et al. Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178, 1283–1292 (1993).

    CAS  PubMed  Google Scholar 

  37. Moore, T. A. & Zlotnik, A. T-cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860 (1995).

    CAS  PubMed  Google Scholar 

  38. Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911 (1996).

    CAS  PubMed  Google Scholar 

  39. Schmitt, T. M., Ciofani, M., Petrie, H. T. & Zuniga-Pflucker, J. C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ismaili, J., Antica, M. & Wu, L. CD4 and CD8 expression and T cell antigen receptor gene rearrangement in early intrathymic precursor cells. Eur. J. Immunol. 26, 731–737 (1996).

    CAS  PubMed  Google Scholar 

  41. Capone, M., Hockett, R. D. Jr & Zlotnik, A. Kinetics of T cell receptor β, γ, and δ rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44+CD25+ pro-T thymocytes. Proc. Natl Acad. Sci. USA 95, 12522–12527 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540 (1991).

    CAS  PubMed  Google Scholar 

  43. Ceredig, R. & Rolink, T. A positive look at double-negative thymocytes. Nature Rev. Immunol. 2, 888–897 (2002).

    CAS  Google Scholar 

  44. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    CAS  PubMed  Google Scholar 

  45. Hashimoto, Y., Montecino-Rodriguez, E., Leathers, H., Stephan, R. P. & Dorshkind, K. B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment. Blood 100, 3504–3511 (2002).

    CAS  PubMed  Google Scholar 

  46. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173, 245–250 (2004).

    CAS  PubMed  Google Scholar 

  47. Porritt, H. E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20, 735–745 (2004). This paper shows that apart from ETPs, other 'non-canonical' T-cell progenitors are present in the thymus, but these additional progenitors are considerably less efficient at generating T cells. The data indicate that multiple different progenitors for T cells might enter the thymus.

    CAS  PubMed  Google Scholar 

  48. Balciunaite, G., Ceredig, R. & Rolink, A. G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential. Blood 105, 1930–1936 (2005).

    CAS  PubMed  Google Scholar 

  49. Sambandam, A. et al. Notch signalling controls the generation and differentiation of early T lineage progenitors. Nature Immunol. 6, 663–670 (2005). Together with reference 63, this paper shows that Notch signalling is crucial at the earliest steps of intrathymic T-cell development, upstream of ETPs, and also indicates that the earliest thymic immigrants are likely to express the FLT3 cytokine receptor.

    CAS  Google Scholar 

  50. Godfrey, D. I., Zlotnik, A. & Suda, T. Phenotypic and functional characterization of c-kit expression during intrathymic T cell development. J. Immunol. 149, 2281–2285 (1992).

    CAS  PubMed  Google Scholar 

  51. Lu, M. et al. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRβ chains than fetal progenitors. J. Immunol. 175, 5848–5856 (2005).

    CAS  PubMed  Google Scholar 

  52. Wu, L. et al. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349, 71–74 (1991).

    CAS  PubMed  Google Scholar 

  53. Michie, A. M., Carlyle, J. R. & Zuniga-Pflucker, J. C. Early intrathymic precursor cells acquire a CD4low phenotype. J. Immunol. 160, 1735–1741 (1998).

    CAS  PubMed  Google Scholar 

  54. King, A. G., Kondo, M., Scherer, D. C. & Weissman, I. L. Lineage infidelity in myeloid cells with TCR gene rearrangement: a latent developmental potential of proT cells revealed by ectopic cytokine receptor signalling. Proc. Natl Acad. Sci. USA 99, 4508–4513 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Benz, C. & Bleul, C. C. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med. 202, 21–31 (2005). Using a CCR9–EGFP reporter mouse, these authors identified ETPs that were EGFPhi, and showed that these cells were developmentally early progenitors because they have B- and T-cell-lineage potential at the single cell level. These data indicate that some thymus-settling progenitors are likely to express CCR9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005). This paper shows that the FLT3hi subset of bone-marrow LSK progenitors lacks erythroid-cell and megakaryocyte potential. This FLT3hi population has been suggested to represent a lymphoid-primed MPP population.

    CAS  PubMed  Google Scholar 

  57. Balciunaite, G., Ceredig, R., Massa, S. & Rolink, A. G. A B220+ CD117+ CD19 hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur. J. Immunol. 35, 2019–2030 (2005).

    CAS  PubMed  Google Scholar 

  58. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zediak, V. P., Maillard, I. & Bhandoola, A. Closer to the source: notch and the nature of thymus-settling cells. Immunity 23, 245–248 (2005).

    CAS  PubMed  Google Scholar 

  60. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    CAS  PubMed  Google Scholar 

  61. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    CAS  PubMed  Google Scholar 

  62. Maillard, I., Fang, T. & Pear, W. S. Regulation of lymphoid development, differentiation, and function by the notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    CAS  PubMed  Google Scholar 

  63. Tan, J. B., Visan, I., Yuan, J. S. & Guidos, C. J. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nature Immunol. 6, 671–679 (2005).

    CAS  Google Scholar 

  64. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).

    CAS  PubMed  Google Scholar 

  65. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    CAS  PubMed  Google Scholar 

  66. Porritt, H. E., Gordon, K. & Petrie, H. T. Kinetics of steady-state differentiation and mapping of intrathymic-signalling environments by stem cell transplantation in nonirradiated mice. J. Exp. Med. 198, 957–962 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mori, S., Shortman, K. & Wu, L. Characterization of thymus-seeding precursor cells from mouse bone marrow. Blood 98, 696–704 (2001).

    CAS  PubMed  Google Scholar 

  68. Lu, M., Kawamoto, H., Katsube, Y., Ikawa, T. & Katsura, Y. The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells. J. Immunol. 169, 3519–3525 (2002).

    CAS  PubMed  Google Scholar 

  69. Lai, A. Y., Lin, S. M. & Kondo, M. Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow. J. Immunol. 175, 5016–5023 (2005).

    CAS  PubMed  Google Scholar 

  70. Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    CAS  PubMed  Google Scholar 

  71. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  72. Rodewald, H. R., Ogawa, M., Haller, C., Waskow, C. & DiSanto, J. P. Pro-thymocyte expansion by c-kit and the common cytokine receptor g-chain is essential for repertoire formation. Immunity 6, 265–272 (1997).

    CAS  PubMed  Google Scholar 

  73. Sitnicka, E. et al. Complementary signalling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med. 198, 1495–1506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Igarashi, H., Gregory, S., Yokota, T., Sakaguchi, N. & Kincade, P. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002). Using RAG1-reporter mice, these authors identified and characterized a subset of MPPs (denoted as ELP) that express RAG. These data showed that lymphoid specification steps occur very early in haematopoietic development.

    CAS  PubMed  Google Scholar 

  75. Yokota, T. et al. Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity 19, 365–375 (2003).

    CAS  PubMed  Google Scholar 

  76. Hirose, J. et al. A developing picture of lymphopoiesis in bone marrow. Immunol. Rev. 189, 28–40 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behaviour within bone marrow during development. Immunity 20, 707–718 (2004).

    CAS  PubMed  Google Scholar 

  78. Perry, S. S. et al. L-selectin defines a bone marrow analogue to the thymic early T-lineage progenitor. Blood 103, 2990–2996 (2004). These authors used L-selectin as a marker to identify a subset of MPPs in the bone marrow that might be biased towards the T-cell lineage.

    CAS  PubMed  Google Scholar 

  79. Arbones, M. L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247–260 (1994).

    CAS  PubMed  Google Scholar 

  80. Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rossi, F. M. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nature Immunol. 6, 626–634 (2005).

    CAS  Google Scholar 

  82. Lesley, J., Hyman, R. & Schulte, R. Evidence that the Pgp-1 glycoprotein is expressed on thymus-homing progenitor cells of the thymus. Cell. Immunol. 91, 397–403 (1985).

    CAS  PubMed  Google Scholar 

  83. Wurbel, M. A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood 98, 2626–2632 (2001).

    CAS  PubMed  Google Scholar 

  84. Liu, C. et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 105, 31–39 (2005).

    CAS  PubMed  Google Scholar 

  85. Uehara, S., Grinberg, A., Farber, J. M. & Love, P. E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 168, 2811–2819 (2002).

    CAS  PubMed  Google Scholar 

  86. von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    CAS  PubMed  Google Scholar 

  87. Gounari, F. et al. Tracing lymphopoiesis with the aid of a pTα-controlled reporter gene. Nature Immunol. 3, 489–496 (2002).

    CAS  Google Scholar 

  88. Pelayo, R. et al. Lymphoid progenitors and primary routes to becoming cells of the immune system. Curr. Opin. Immunol. 17, 100–107 (2005).

    CAS  PubMed  Google Scholar 

  89. Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ceredig, R. The ontogeny of B cells in the thymus of normal, CD3ε knockout (KO), RAG-2 KO and IL-7 transgenic mice. Int. Immunol. 14, 87–99 (2002).

    CAS  PubMed  Google Scholar 

  91. Rodewald, H. R., Kretzschmar, K., Takeda, S., Hohl, C. & Dessing, M. Identification of pro-thymocytes in murine fetal blood: T lineage commitment can precede thymus colonization. EMBO J. 13, 4229–4240 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Carlyle, J. R. et al. Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med. 186, 173–182 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Harman, B. C. et al. T/B lineage choice occurs prior to intrathymic Notch signalling. Blood 106, 886–892 (2005).

    CAS  PubMed  Google Scholar 

  94. Kawamoto, H., Ohmura, K., Fujimoto, S. & Katsura, Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J. Immunol. 162, 2725–2731 (1999).

    CAS  PubMed  Google Scholar 

  95. Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).

    CAS  PubMed  Google Scholar 

  96. Katsura, Y. Redefinition of lymphoid progenitors. Nature Rev. Immunol. 2, 127–132 (2002).

    CAS  Google Scholar 

  97. Kawamata, S., Du, C., Li, K. & Lavau, C. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 21, 3855–3863 (2002).

    CAS  PubMed  Google Scholar 

  98. Shen, H. Q. et al. T/NK bipotent progenitors in the thymus retain the potential to generate dendritic cells. J. Immunol. 171, 3401–3406 (2003).

    CAS  PubMed  Google Scholar 

  99. Ikawa, T. et al. Identification of the earliest prethymic T-cell progenitors in murine fetal blood. Blood 103, 530–537 (2004).

    CAS  PubMed  Google Scholar 

  100. Masuda, K. et al. Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J. 24, 4052–4060 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kincade, P. W. et al. Nature or nurture? Steady-state lymphocyte formation in adults does not recapitulate ontogeny. Immunol. Rev. 187, 116–125 (2002).

    PubMed  Google Scholar 

  102. Jaleco, A. C. et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194, 991–1002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    CAS  PubMed  Google Scholar 

  104. Yu, W. et al. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5' of RAG2. Science 285, 1080–1084 (1999).

    CAS  PubMed  Google Scholar 

  105. Hsu, L. Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003).

    CAS  PubMed  Google Scholar 

  106. Borghesi, L. et al. B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J. Exp. Med. 199, 491–502 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Miller, J. P. & Allman, D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 171, 2326–2330 (2003).

    CAS  PubMed  Google Scholar 

  108. Dias, S., Silva, H., Jr, Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Taghon, T. N., David, E. S., Zuniga-Pflucker, J. C. & Rothenberg, E. V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signalling. Genes Dev. 19, 965–978 (2005). This paper shows that the initial steps of B- and T-cell-lineage specification are reversible.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hoflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    PubMed  Google Scholar 

  111. Lancrin, C. et al. Major T cell progenitor activity in bone marrow-derived spleen colonies. J. Exp. Med. 195, 919–929 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Arcangeli, M. L. et al. Extrathymic hemopoietic progenitors committed to T cell differentiation in the adult mouse. J. Immunol. 174, 1980–1988 (2005).

    CAS  PubMed  Google Scholar 

  113. Terra, R. et al. T-cell generation by lymph node resident progenitor cells. Blood 106, 193–200 (2005).

    CAS  PubMed  Google Scholar 

  114. Chatterjea-Matthes, D. et al. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice. J. Immunol. 171, 1207–1215 (2003).

    CAS  PubMed  Google Scholar 

  115. Stier, S., Cheng, T., Dombkowski, D., Carlesso, N. & Scadden, D. T. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favours lymphoid over myeloid lineage outcome. Blood 99, 2369–2378 (2002).

    CAS  PubMed  Google Scholar 

  116. Varnum-Finney, B., Brashem-Stein, C. & Bernstein, I. D. Combined effects of Notch signalling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101, 1784–1789 (2003).

    CAS  PubMed  Google Scholar 

  117. Ciofani, M. & Zuniga-Pflucker, J. C. Notch promotes survival of pre-T cells at the b-selection checkpoint by regulating cellular metabolism. Nature Immunol. 6, 881–888 (2005).

    CAS  Google Scholar 

  118. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nature Immunol. 5, 133–139 (2004).

    CAS  Google Scholar 

  119. Aspinall, R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J. Immunol. 158, 3037–3045 (1997).

    CAS  PubMed  Google Scholar 

  120. Aspinall, R. & Andrew, D. Age-associated thymic atrophy is not associated with a deficiency in the CD44+CD25CD3CD4CD8 thymocyte population. Cell. Immunol. 212, 150–157 (2001).

    CAS  PubMed  Google Scholar 

  121. Fitzpatrick, F. T., Kendall, M. D., Wheeler, M. J., Adcock, I. M. & Greenstein, B. D. Reappearance of thymus of ageing rats after orchidectomy. J. Endocrinol. 106, R17–R19 (1985).

    CAS  PubMed  Google Scholar 

  122. Sutherland, J. S. et al. Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741–2753 (2005).

    CAS  PubMed  Google Scholar 

  123. Heng, T. S. et al. Effects of castration on thymocyte development in two different models of thymic involution. J. Immunol. 175, 2982–2993 (2005).

    CAS  PubMed  Google Scholar 

  124. Kang, J., Volkmann, A. & Raulet, D. H. Evidence that γδ versus αβ T cell fate determination is initiated independently of T cell receptor signalling. J. Exp. Med. 193, 689–698 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, L., Livak, F. & Petrie, H. T. in Molecular Biology of B-Cell and T-Cell Development, 235–303 (Humana Press, Totowa, New Jersey, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank E. V. Rothenberg and members of the Bhandoola laboratory for their critical comments. The Bhandoola laboratory is supported by grants from the National Institutes of Health and the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Bhandoola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Avinash Bhandoola's laboratory

Glossary

Parabiotic mice

The circulation of two mice is joined surgically through a flap of skin.

Pre-pro-B cell

The pre-pro-B-cell population is another term for lymphoid progenitors in Hardy Fraction A, which contains CLP-2s.

Hardy Fraction

B cells and B-cell progenitors were divided into Fractions A, B, C, C', D, E and F based on cell-surface expression of B220, CD43, CD24, BP1, IgD and IgM by R. R. Hardy.

Methylcellulose assays

In these assays, progenitor cells are added to methylcellulose medium that contains cytokines. The mixture is plated and incubated for several days. The number and type of colonies resulting from growth of different progenitors is studied. This assay supports myeloid-, erythroid- and B-cell-lineage development, but does not support T-cell-lineage development.

RAG-reporter mice

Two different RAG (recombination-activating gene)-reporter mice have been used in studies of lymphocyte development. One transgenic mouse line expresses green fluorescent protein (GFP) under the control of endogenous Rag1 locus control elements. The other transgenic mouse line carries a bacterial artificial chromosome that encodes a GFP reporter under the control of Rag2 locus control elements.

pTα reporter mice

Pre-T-cell-receptor α-chain (pTα) reporter mice are transgenic mice that express the human CD25 cell-surface marker under the control of locus control elements of the gene encoding pTα.

Lunatic fringe glycosyltransferase

Lunatic fringe is a glycosyltransferase that can modify the extracellular domain of the Notch receptor, thereby altering Notch interactions with its ligands.

OP9–DL1 stromal cells

OP9 bone-marrow cell lines derived from Mscsfop/Mscsfop mice (these cells do not produce functional macrophage colony-stimulating factor (M-CSF)) were engineered to express the Notch ligand Delta-like 1 (DL1) in Juan Carlos Zúñiga-Pflücker's laboratory. These engineered stromal cells support T-cell development in in vitro cultures to the CD4+CD8+ stage, and are very useful for studies of T-cell development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandoola, A., Sambandam, A. From stem cell to T cell: one route or many?. Nat Rev Immunol 6, 117–126 (2006). https://doi.org/10.1038/nri1778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing