Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses

Abstract

Non-germline-encoded T- and B-cell receptors allow humans to effectively deal with rapidly mutating pathogens. Here, we argue that, in addition to determining the antigenic specificity of immune responses, the same receptor systems can also regulate the T-helper-1/T-helper-2 profile of immunity. Such a mechanism — based on feedback from distinct effector cells to dendritic cells, rather than on instruction from pathogens — uses the effectiveness of particular effector cells at targeting and destroying a pathogen as a reliable, experience-based criterion to induce and maintain the appropriately polarized response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current models of instruction-based mechanisms that promote the development of T-helper-1 and T-helper-2 responses.
Figure 2: Two-stage decision-making process during the development of type 1 and type 2 feedback loops.
Figure 3: Three sources of pathogen-relevant information affecting the T-helper-1- versus T-helper-2-driving capacity of dendritic cells.

Similar content being viewed by others

References

  1. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets, TH1, TH2 and more. Immunol. Today 17, 138–146 (1996).

    CAS  PubMed  Google Scholar 

  2. Kalinski, P., Hilkens, C. M, Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells, the concept of a third signal. Immunol. Today 20, 561–567 (1999).

    CAS  PubMed  Google Scholar 

  3. Moser, M. & Murphy, K. M. Dendritic cell regulation of TH1–TH2 development. Nature Immunol. 1, 199–205 (2000).

    CAS  Google Scholar 

  4. Liu, Y. J, Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nature Immunol. 2, 585–589 (2001).

    CAS  Google Scholar 

  5. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253–256 (2001).

    CAS  PubMed  Google Scholar 

  6. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Rev. Immunol. 3, 984–993 (2003).

    CAS  Google Scholar 

  7. De Smedt, T. et al. Effect of interleukin-10 on dendritic cell maturation and function Eur. J. Immunol. 27, 1229–1235 (1997).

    CAS  PubMed  Google Scholar 

  8. Kalinski, P., Hilkens, C. M., Snijders, A., Snijdewint. F. G. & Kapsenberg, M. L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35 (1997).

    CAS  PubMed  Google Scholar 

  9. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (TH2) responses and require obligatory cytokine signals for induction of TH1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pulendran, B. et al. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 167, 5067–5076 (2001).

    CAS  PubMed  Google Scholar 

  12. Maldonado-Lopez, R., Maliszewski, C., Urbain, J. & Moser, M. Cytokines regulate the capacity of CD8α+ and CD8α dendritic cells to prime TH1/TH2 cells in vivo. J. Immunol. 167, 4345–4350 (2001).

    CAS  PubMed  Google Scholar 

  13. de Jong, E. C. et al. Microbial compounds selectively induce TH1 cell-promoting or TH2 cell-promoting dendritic cells in vitro with diverse TH cell-polarizing signals. J. Immunol. 168, 1704–1709 (2002).

    CAS  PubMed  Google Scholar 

  14. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    CAS  PubMed  Google Scholar 

  15. Diebold, S. S. et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324–328 (2003).

    CAS  PubMed  Google Scholar 

  16. O'Connell, P. J. et al. Type-1 polarized nature of mouse liver CD8α and CD8α+ dendritic cells, tissue-dependent differences offset CD8α-related dendritic cell heterogeneity. Eur. J. Immunol. 33, 2007–2013 (2003).

    CAS  PubMed  Google Scholar 

  17. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    CAS  PubMed  Google Scholar 

  20. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl Acad. Sci. USA. 101, 3516–3521 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. French, A. R. et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20, 747–756 (2004).

    CAS  PubMed  Google Scholar 

  22. Netea, M. G., van Deuren, M., Kullberg, B. J., Cavaillon, J. M. & Van der Meer, J. W. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol. 23, 135–139 (2002).

    CAS  PubMed  Google Scholar 

  23. Netea, M. G. et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712–3718 (2004).

    CAS  PubMed  Google Scholar 

  24. Kaiserlian, D. & Dubois, B. Dendritic cells and viral immunity, friends or foes? Semin. Immunol. 13, 303–310 (2001).

    CAS  PubMed  Google Scholar 

  25. Larsson, M., Beignon, A. S. & Bhardwaj, N. DC–virus interplay: a double-edged sword. Semin. Immunol. 16, 147–161 (2004).

    CAS  PubMed  Google Scholar 

  26. Helmby, H. & Grencis, R. K. Essential role for TLR4 and MyD88 in the development of chronic intestinal nematode infection. Eur. J. Immunol. 33, 2974–2979 (2003).

    CAS  PubMed  Google Scholar 

  27. Ruedl, C., Kopf, M. & Bachmann, M. F. CD8+ T cells mediate CD40-independent maturation of dendritic cells in vivo. J. Exp. Med. 189, 1875–1884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mailliard, R. B. et al. Complementary dendritic cell-activating function of CD8+ and CD4+ T cells, helper role of CD8+ T cells in the development of T helper type 1 responses. J. Exp. Med. 195, 473–483 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas, M. J., Noble, A., Sawicka, E., Askenase, P. W. & Kemeny, D. M. CD8 T cells inhibit IgE via dendritic cell IL-12 induction that promotes TH1 T cell counter-regulation. J. Immunol. 168, 216–223 (2002).

    CAS  PubMed  Google Scholar 

  30. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    CAS  PubMed  Google Scholar 

  31. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    CAS  PubMed  Google Scholar 

  32. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    CAS  PubMed  Google Scholar 

  33. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    CAS  PubMed  Google Scholar 

  34. Kemeny, D. M., Noble, A., Holmes, B. J. & Diaz-Sanchez, D. Immune regulation, a new role for the CD8+ T cell. Immunol. Today 15, 107–110 (1994).

    CAS  PubMed  Google Scholar 

  35. Gurunathan, S. et al. Requirements for the maintenance of TH1 immunity in vivo following DNA vaccination, a potential immunoregulatory role for CD8+ T cells. J. Immunol. 165, 915–924 (2000).

    CAS  PubMed  Google Scholar 

  36. Hyland, L., Hou, S., Coleclough, C., Takimoto, T. & Doherty, P. C. Mice lacking CD8+ T cells develop greater numbers of IgA-producing cells in response to a respiratory virus infection. Virology 204, 234–241 (1994).

    CAS  PubMed  Google Scholar 

  37. Sangster, M. Y., Mo, X. Y., Sealy, R. & Coleclough, C. Matching antibody class with pathogen type and portal of entry, cognate mechanisms regulate local isotype expression patterns in lymph nodes draining the respiratory tract of mice inoculated with respiratory viruses, according to virus replication competence and site of inoculation. J. Immunol. 159, 1893–1902 (1997).

    CAS  PubMed  Google Scholar 

  38. Dubois, B. et al. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J. Exp. Med. 185, 941–951 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002).

    CAS  Google Scholar 

  40. Skok, J., Poudrier, J. & Gray, D. Dendritic cell-derived IL-12 promotes B cell induction of TH2 differentiation, a feedback regulation of TH1 development. J. Immunol. 163, 4284–4291 (1999).

    CAS  PubMed  Google Scholar 

  41. Moulin, V. et al. B lymphocytes regulate dendritic cell (DC) function in vivo, increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med. 192, 475–482 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    CAS  PubMed  Google Scholar 

  43. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nature Immunol. 3, 944–950 (2002).

    CAS  Google Scholar 

  44. van der Heijden, F. L., Joost van Neerven, R. J., van Katwijk, M., Bos, J. D. & Kapsenberg, M. L. Serum-IgE-facilitated allergen presentation in atopic disease. J. Immunol. 150, 3643–3650 (1993).

    CAS  PubMed  Google Scholar 

  45. Galli, S. J., Maurer, M. & Lantz, C. S. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol. 11, 53–59 (1999).

    CAS  PubMed  Google Scholar 

  46. Jefferis, R. & Lund, J. Interaction sites on human IgG-Fc for FcγR, current models. Immunol. Lett. 82, 57–65 (2002).

    CAS  PubMed  Google Scholar 

  47. Regnault, A. et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–380 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Koh, C. Y. & Yuan, D. The functional relevance of NK-cell-mediated upregulation of antigen-specific IgG2a responses. Cell. Immunol. 204, 135–142 (2000).

    CAS  PubMed  Google Scholar 

  49. Biron, C. A. & Brossay, L. NK cells and NKT cells in innate defense against viral infections. Curr. Opin. Immunol. 13, 458–464 (2001).

    CAS  PubMed  Google Scholar 

  50. Doherty, P. C. & Allan, J. E. Anti-asialo GM1 eliminates both inflammatory process and cytotoxic T-cell function in the lymphocytic choriomeningitis adoptive transfer model. Cell. Immunol. 107, 1–7 (1987).

    CAS  PubMed  Google Scholar 

  51. Kelly, J. M. et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nature Immunol. 3, 83–90 (2002).

    CAS  Google Scholar 

  52. Coudert, J. D., Coureau, C. & Guery, J. C. Preventing NK cell activation by donor dendritic cells enhances allospecific CD4 T cell priming and promotes TH type 2 responses to transplantation antigens. J. Immunol. 169, 2979–2987 (2002).

    CAS  PubMed  Google Scholar 

  53. Szomolanyi-Tsuda, E. et al. Antiviral T-cell-independent type 2 antibody responses induced in vivo in the absence of T and NK cells. Virology 280, 160–168 (2001).

    CAS  PubMed  Google Scholar 

  54. Hussell, T. & Openshaw, P. J. IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions. J. Immunol. 165, 7109–7115 (2000).

    CAS  PubMed  Google Scholar 

  55. Biron, C. A., Byron, K. S. & Sullivan, J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    CAS  PubMed  Google Scholar 

  56. Joncas, J. et al. Killer cell defect and persistent immunological abnormalities in two patients with chronic active Epstein–Barr virus infection. J. Med. Virol. 28, 110–117 (1989).

    CAS  PubMed  Google Scholar 

  57. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mailliard, R. B. et al. Dendritic cells mediate NK cell help for TH1 and CTL responses, two-signal requirement for the induction of NK cell helper function. J. Immunol. 171, 2366–2373 (2003).

    CAS  PubMed  Google Scholar 

  61. Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions, cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med. 5, 405–411 (1999).

    CAS  PubMed  Google Scholar 

  62. Mocikat, R. et al. Natural killer cells activated by MHC class Ilow targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561–569 (2003).

    CAS  PubMed  Google Scholar 

  63. Fukao, T. et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nature Immunol. 3, 295–304 (2002).

    CAS  Google Scholar 

  64. van der Pouw Kraan, T. C. et al. Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J. Clin. Invest. 102, 1866–1873 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mazzoni, A., Young, H. A., Spitzer, J. H., Visintin, A. & Segal, D. M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 108, 1865–1873 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Caron, G. et al. Histamine polarizes human dendritic cells into TH2 cell-promoting effector dendritic cells. J. Immunol. 167, 3682–3686 (2001).

    CAS  PubMed  Google Scholar 

  67. Matsuoka, T. et al. Prostaglandin D2 as a mediator of allergic asthma. Science 287, 2013–2017 (2000).

    CAS  PubMed  Google Scholar 

  68. Romagnani, S. Regulation of the development of type 2 T-helper cells in allergy. Curr. Opin. Immunol. 6, 838–846 (1994).

    CAS  PubMed  Google Scholar 

  69. Baumgarth, N. A two-phase model of B-cell activation. Immunol. Rev. 176, 171–180 (2000).

    CAS  PubMed  Google Scholar 

  70. McHeyzer-Williams, M. G. B cells as effectors. Curr. Opin. Immunol. 15, 354–361 (2003).

    CAS  PubMed  Google Scholar 

  71. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    CAS  PubMed  Google Scholar 

  72. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    CAS  PubMed  Google Scholar 

  73. Vales-Gomez, M., Reyburn, H. & Strominger, J. Interaction between the human NK receptors and their ligands. Crit. Rev. Immunol. 20, 223–244 (2000).

    CAS  PubMed  Google Scholar 

  74. Agarwal, A., Nayak, B. P. & Rao, K. V. S. B cell responses to a peptide epitope. VII. Antigen-dependent modulation of the germinal center reaction. J. Immunol. 161, 5832–5841 (1998).

    CAS  PubMed  Google Scholar 

  75. Qin, D. et al. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    CAS  PubMed  Google Scholar 

  76. Wu, X. et al. Impaired affinity maturation in Cr2−/− mice is rescued by adjuvants without improvement in germinal center development. J. Immunol. 165, 3119–3127 (2000).

    CAS  PubMed  Google Scholar 

  77. Kosco-Vilbois, M. H. Are follicular dendritic cells really good for nothing? Nature Rev. Immunol. 3, 764–769 (2003).

    CAS  Google Scholar 

  78. Sutterwala, F. S., Noel, G. J., Clynes, R. & Mosser, D. M. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J. Exp. Med. 185, 1977–1985 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Marth, T. & Kelsall, B. L. Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185, 1987–1995 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wittmann, M. et al. C5a suppresses the production of IL-12 by IFN-γ-primed and lipopolysaccharide-challenged human monocytes. J. Immunol. 162, 6763–6769 (1999).

    CAS  PubMed  Google Scholar 

  81. Nitta, T. & Suzuki, T. Fcγ 2b receptor-mediated prostaglandin synthesis by a murine macrophage cell line (P388D1). J. Immunol. 128, 2527–2532 (1982).

    CAS  PubMed  Google Scholar 

  82. Daeron, M. Fc receptor biology. Annu. Rev. Immunol. 15, 203–234 (1997).

    CAS  PubMed  Google Scholar 

  83. Guyre, C. A., Barreda, M. E., Swink, S. L. & Fanger, M. W. Colocalization of Fcγ RI-targeted antigen with class I MHC, implications for antigen processing. J. Immunol. 166, 2469–2478 (2001).

    CAS  PubMed  Google Scholar 

  84. Amigorena, S. & Bonnerot, C. Fc receptors for IgG and antigen presentation on MHC class I and class II molecules. Semin. Immunol. 11, 385–390 (1999).

    CAS  PubMed  Google Scholar 

  85. Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. Nature Med. 4, 627–630 (1998).

    CAS  PubMed  Google Scholar 

  86. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    CAS  PubMed  Google Scholar 

  87. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    CAS  PubMed  Google Scholar 

  88. Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential Toll-like receptor ligation. J. Exp. Med. 197, 101–109 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fraser, J. D. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339, 221–223 (1989).

    CAS  PubMed  Google Scholar 

  90. Sheu, B. C. et al. Predominant TH2/TC2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J. Immunol. 167, 2972–2978 (2001).

    CAS  PubMed  Google Scholar 

  91. Tatsumi, T. et al. Disease-associated bias in T helper type 1 (TH1)/TH2 CD4+ T cell responses against MAGE-6 in HLA-DRB1*0401+ patients with renal cell carcinoma or melanoma. J. Exp. Med. 196, 619–628 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kalish, R. S. & Askenase, P. W. Molecular mechanisms of CD8+ T cell-mediated delayed hypersensitivity, implications for allergies, asthma, and autoimmunity. J. Allergy Clin. Immunol. 103, 192–199 (1999).

    CAS  PubMed  Google Scholar 

  93. Grewe, M. et al. A role for TH1 and TH2 cells in the immunopathogenesis of atopic dermatitis. Immunol. Today 19, 359–361 (1998).

    CAS  PubMed  Google Scholar 

  94. Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human TH2 cells, reversal of polarized TH2 phenotype by dendritic cells. J. Immunol. 165, 1877–1881 (2000).

    CAS  PubMed  Google Scholar 

  95. Smits, H. H. et al. IL-12-induced reversal of human TH2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur. J. Immunol. 31, 1055–1065 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Mailliard, O. Leo, M. Kapsenberg, A. Wankowicz, L. Borghesi, R. Thomas and B. Kelsall for stimulating discussions and critical comments. This work was supported by the National Institutes of Health (United States). P.K. is also supported by The Pittsburgh Foundation Award (United States), and M.M. is a senior research associate supported by the Belgian National Fund for Scientific Research (FNRS, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Kalinski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CD40L

IFN-γ

IL-4

IL-10

IL-12

TLR3

TLR9

TNF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinski, P., Moser, M. Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat Rev Immunol 5, 251–260 (2005). https://doi.org/10.1038/nri1569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing