Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiprion immunotherapy: to suppress or to stimulate?

Key Points

  • Prion diseases are progressive, ultimately fatal neurological disorders. They are unique in that they are transmissible. The latency period in prion diseases is extremely long, which provides a window of time to exploit potential interventional strategies before clinical symptoms arise.

  • Examples of prion diseases are bovine spongiform encephalopathy in cows, scrapie in sheep, chronic wasting disease in deer and elk, and Creutzfeldt–Jakob disease in humans. Scrapie has been known to exist for more than two centuries.

  • No experiments have so far unambiguously shown that the disease-associated prion protein (PrPSc) is the transmissible agent, but it is known to be an important component of prion infectivity. The function of the cellular prion protein (PrPC) is not clear.

  • Neuronal cytotoxicity of PrPSc depends on the expression of PrPC. Evidence indicates that the conversion of PrPC to PrPSc is deleterious, but the mechanism of neural degeneration is still unclear.

  • Several prion diseases are transmitted by ingestion of prion-contaminated food. After prion uptake, a replication phase occurs in lymphoid tissue before invasion of the nervous system. The abnormally folded, aggregated PrPSc is amplified in the lymphoid germinal centres, probably by follicular dendritic cells and tingible-body macrophages, and possibly by other lymphoid cells.

  • Depletion of mature follicular dendritic cells delays the development of prion disease after intraperitoneal inoculation, so this might be considered as a post-exposure prophylactic strategy.

  • Vaccination has so far been unsuccessful in the generation of effective PrP-specific antibody responses in mice because of tolerance to PrPC. Furthermore, therapy with CpG-containing oligodeoxynucleotides, using a multi-dose regimen, causes unwanted toxic side-effects. However, another option for treatment might be administration of a dimeric PrP molecule fused to the Fc portion of IgG1, as this has been shown to antagonize prion accumulation.

  • Other chemical modifiers that disrupt prion accumulation in vitro include Congo red, amphotericin B, anthracycline derivatives, sulphated polyanions, pentosan polysulphate, soluble lymphotoxin-β receptors, porphyrins, branched polyamines and β-sheet-breaker peptides.

Abstract

Although human prion diseases are rare, they are invariably fatal, and treatments remain elusive. Hundreds of iatrogenic prion transmissions have occurred in the past two decades, and the bovine spongiform encephalopathy epidemic has raised concerns about prion transmission from cattle to humans. Research into therapeutics for prion disease is being pursued in several centres and prominently includes immunological strategies. Currently, the options that are being explored aim either to mobilize the innate and adaptive immune systems towards prion destruction or to suppress or dedifferentiate the lymphoreticular compartments that replicate prions. This article reviews the pathophysiology of prion diseases in mouse models and discusses their relevance to immunotherapeutic and immunoprophylactic antiprion strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prion hypothesis.
Figure 2: Dissemination of prions in scrapie-infected sheep or goats.
Figure 3: Models of the signalling pathways required for the establishment and maintenance of functional follicular dendritic cells.
Figure 4: Immunotherapeutic strategies for prion disease.
Figure 5: PrPSc accumulates in the germinal centres of lymphoid follicles in prion-infected lymph nodes.
Figure 6: Treatment with CpG ODNs leads to lymphoid germinal-centre destruction.

Similar content being viewed by others

References

  1. Aguzzi, A. & Haass, C. Games played by rogue proteins in prion disorders and Alzheimer's disease. Science 302, 814–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Cuille, J. & Chelle, P. L. Experimental transmission of trembling to the goat. C. R. Hebd. Seances Acad. Sci. D, Sci. Nat. 208, 1058–1160 (1939).

    Google Scholar 

  3. Wells, G. A. et al. A novel progressive spongiform encephalopathy in cattle. Vet. Rec. 121, 419–420 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Weissmann, C. & Aguzzi, A. Bovine spongiform encephalopathy and early onset variant Creutzfeldt–Jakob disease. Curr. Opin. Neurobiol. 7, 695–700 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, D. M. Inactivation of transmissible degenerative encephalopathy agents: a review. Vet. J. 159, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Aguzzi, A. Neuro-immune connection in spread of prions in the body? Lancet 349, 742–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Nicotera, P. A route for prion neuroinvasion. Neuron 31, 345–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982). Discovery of the proteinase-K-resistant prion, PrPSc, in a hamster infected with scrapie.

    Article  CAS  PubMed  Google Scholar 

  9. Stahl, N., Borchelt, D. R., Hsiao, K. & Prusiner, S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Moudjou, M., Frobert, Y., Grassi, J. & La Bonnardiere, C. Cellular prion protein status in sheep: tissue-specific biochemical signatures. J. Gen. Virol. 82, 2017–2024 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Miele, G. et al. Embryonic activation and developmental expression of the murine prion protein gene. Gene Expr. 11, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Büeler, H. R. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  Google Scholar 

  13. Collinge, J. et al. Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Tobler, I. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Glockshuber, R. et al. Prion protein structural features indicate possible relations to signal peptidases. FEBS Lett. 426, 291–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, D. R. et al. Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344, 1–5 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakudo, A. et al. Impairment of superoxide dismutase activation by N-terminally truncated prion protein (PrP) in PrP-deficient neuronal cell line. Biochem. Biophys. Res. Commun. 308, 660–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Waggoner, D. J. et al. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J. Biol. Chem. 275, 7455–7458 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hutter, G., Heppner, F. L. & Aguzzi, A. No superoxide dismutase activity of cellular prion protein in vivo. Biol. Chem. 384, 1279–1285 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982). Classic enunciation of the protein-only hypothesis of prion disease by Stanley Prusiner.

    Article  CAS  PubMed  Google Scholar 

  22. Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations Nature Med. 4, 1157–1165 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Aguzzi, A. & Heikenwalder, M. Prion diseases: cannibals and garbage piles. Nature 423, 127–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chesebro, B. et al. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 315, 331–333 (1985). Describes the cloning of the gene that encodes PrPC.

    Article  CAS  PubMed  Google Scholar 

  25. Weissmann, C. Spongiform encephalopathies. The prion's progress. Nature 349, 569–571 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Telling, G. C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Weissmann, C. A 'unified theory' of prion propagation. Nature 352, 679–683 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Deleault, N. R., Lucassen, R. W. & Supattapone, S. RNA molecules stimulate prion protein conversion. Nature 425, 717–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Aguzzi, A. & Weissmann, C. Prion research: the next frontiers. Nature 389, 795–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Meier, P. et al. Soluble dimeric prion protein binds PrPScin vivo and antagonizes prion disease. Cell 113, 49–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Aguzzi, A. & Polymenidou, M. Mammalian prion biology. One century of evolving concepts. Cell 116, 313–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Raeber, A. J. et al. Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16, 6057–6065 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003). Shows that depletion of PrP from the neurons of transgenic mice prevents the development of prion disease in infected mice.

    Article  CAS  PubMed  Google Scholar 

  36. Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Büeler, H. R. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993). Shows that PrP is required for susceptibility to prion infections. An important milestone in prion research.

    Article  PubMed  Google Scholar 

  38. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Büeler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).

    Article  PubMed  Google Scholar 

  40. Manson, J. C., Clarke, A. R., McBride, P. A., McConnell, I. & Hope, J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3, 331–340 (1994).

    CAS  PubMed  Google Scholar 

  41. Hilton, D. A. et al. Specificity of lymphoreticular accumulation of prion protein for variant Creutzfeldt–Jakob disease. J. Clin. Pathol. 57, 300–302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heggebo, R., Press, C. M., Gunnes, G., Gonzalez, L. & Jeffrey, M. Distribution and accumulation of PrP in gut-associated and peripheral lymphoid tissue of scrapie-affected Suffolk sheep. J. Gen. Virol. 83, 479–489 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Jeffrey, M., McGovern, G., Martin, S., Goodsir, C. M. & Brown, K. L. Cellular and sub-cellular localisation of PrP in the lymphoreticular system of mice and sheep. Arch. Virol. Suppl. 16, 23–38 (2000).

    Google Scholar 

  44. Sigurdson, C. J. et al. Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus). J. Gen. Virol. 80, 2757–2764 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Terry, L. A. et al. Detection of disease-specific PrP in the distal ileum of cattle exposed orally to the agent of bovine spongiform encephalopathy. Vet. Rec. 152, 387–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Wells, G. A. et al. Preliminary observations on the pathogenesis of experimental bovine spongiform encephalopathy (BSE): an update. Vet. Rec. 142, 103–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Glatzel, M., Abela, E., Maissen, M. & Aguzzi, A. Extraneural pathologic prion protein in sporadic Creutzfeldt–Jakob disease. N. Engl. J. Med. 349, 1812–1820 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Houston, E. F., Halliday, S. I., Jeffrey, M., Goldmann, W. & Hunter, N. New Zealand sheep with scrapie-susceptible PrP genotypes succumb to experimental challenge with a sheep-passaged scrapie isolate (SSBP/1). J. Gen. Virol. 83, 1247–1250 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463 (1970). Shows that PrP accumulates in lymphoid organs in the mouse model of scrapie.

    Article  CAS  PubMed  Google Scholar 

  50. Heppner, F. L., Prinz, M. & Aguzzi, A. Pathogenesis of prion diseases: possible implications of microglial cells. Prog. Brain Res. 132, 737–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Betmouni, S., Perry, V. H. & Gordon, J. L. Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 74, 1–5 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Perry, V. H., Cunningham, C. & Boche, D. Atypical inflammation in the central nervous system in prion disease. Curr. Opin. Neurol. 15, 349–354 (2002).

    Article  PubMed  Google Scholar 

  53. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492. (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Prinz, M. et al. Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep. 4, 195–199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Aguzzi, A. Prions and the immune system: a journey through gut, spleen, and nerves. Adv. Immunol. 81, 123–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967). A mathematician proposes that the scrapie agent might not be a traditional infectious agent but, instead, an infectious protein.

    Article  CAS  PubMed  Google Scholar 

  59. Pattison, I. H. & Millson, G. C. Further observations on the experimental production of scrapie in goats and sheep. J. Comp. Pathol. 70, 182–193 (1960).

    Article  CAS  PubMed  Google Scholar 

  60. Pattison, I. H. & Millson, G. C. Distribution of the scrapie agent in the tissues of experimentally inoculated goats. J. Comp. Pathol. 72, 233–244 (1962).

    Article  CAS  PubMed  Google Scholar 

  61. Heppner, F. L. et al. Transepithelial prion transport by M cells. Nature Med. 7, 976–977 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Prinz, M. et al. Oral prion infection requires normal numbers of Peyer's patches but not of enteric lymphocytes. Am. J. Pathol. 162, 1103–1111 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heggebo, R. et al. Detection of PrPSc in lymphoid tissues of lambs experimentally exposed to the scrapie agent. J. Comp. Pathol. 128, 172–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrPSc from the gut. J. Gen. Virol. 83, 267–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Aucouturier, P. et al. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest. 108, 703–708 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prinz, M. et al. Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc. Natl Acad. Sci. USA 99, 919–924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Blättler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389, 69–73 (1997). Finds that PrPC is required for prions to reach the CNS after a peripheral exposure (either intraperitoneal or intravenous).

    Article  PubMed  Google Scholar 

  71. Kaeser, P. S., Klein, M. A., Schwarz, P. & Aguzzi, A. Efficient lymphoreticular prion propagation requires PrPC in stromal and hematopoietic cells. J. Virol. 75, 7097–7106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Med. 5, 1308–1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Beekes, M., Baldauf, E. & Diringer, H. Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J. Gen. Virol. 77, 1925–1934 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Beekes, M., McBride, P. A. & Baldauf, E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J. Gen. Virol. 79, 601–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31, 25–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Caughey, B. & Race, R. E. Potent inhibition of scrapie-associated PrP accumulation by Congo red. J. Neurochem. 59, 768–771 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Pocchiari, M., Schmittinger, S. & Masullo, C. Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol. 68, 219–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Tagliavini, F. et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276, 1119–1122 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Caughey, B. & Raymond, G. J. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 643–650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Farquhar, C., Dickinson, A. & Bruce, M. Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 353, 117 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Priola, S. A., Raines, A. & Caughey, W. S. Porphyrin and phthalocyanine antiscrapie compounds. Science 287, 1503–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Supattapone, S. et al. Branched polyamines cure prion-infected neuroblastoma cells. J. Virol. 75, 3453–3461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soto, C. et al. Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet 355, 192–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Fraser, H. et al. Replication of scrapie in spleens of SCID mice follows reconstitution with wild-type mouse bone marrow. J. Gen. Virol. 77, 1935–1940 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Jeffrey, M., McGovern, G., Goodsir, C. M., Brown, K. L. & Bruce, M. E. Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J. Pathol. 191, 323–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Sigurdson, C. J. et al. PrPCWD lymphoid cell targets in early and advanced chronic wasting disease of mule deer. J. Gen. Virol. 83, 2617–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Kitamoto, T., Muramoto, T., Mohri, S., Doh-ura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol. 65, 6292–6295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mackay, F. & Browning, J. L. Turning off follicular dendritic cells. Nature 395, 26–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, Q. et al. The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues. J. Exp. Med. 190, 629–638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Sethi, S., Lipford, G., Wagner, H. & Kretzschmar, H. Postexposure prophylaxis against prion disease with a stimulator of innate immunity. Lancet 360, 229–230 (2002).

    Article  PubMed  Google Scholar 

  95. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Med. 10, 187–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Beringue, V. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol. 190, 495–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Mattei, V. et al. Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett. 560, 14–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Manson, J. et al. The prion protein gene: a role in mouse embryogenesis? Development 115, 117–122 (1992).

    CAS  PubMed  Google Scholar 

  99. Cashman, N. R. et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61, 185–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  100. Heppner, F. L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. White, A. R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 514–516 (2004).

    Article  CAS  Google Scholar 

  105. Gommerman, J. L. et al. Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J. Clin. Invest. 110, 1359–1369 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl Acad. Sci. USA 99, 13079–13084 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brandner, S. et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl Acad. Sci. USA 93, 13148–13151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Prusiner, S. B. et al. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc. Natl Acad. Sci. USA 90, 10608–10612 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koller, M. F., Grau, T. & Christen, P. Induction of antibodies against murine full-length prion protein in wild-type mice. J. Neuroimmunol. 132, 113–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Aguzzi, A. & Glatzel, M. vCJD tissue distribution and transmission by transfusion — a worst-case scenario coming true? Lancet 363, 411–412 (2004).

    Article  PubMed  Google Scholar 

  111. Llewelyn, C. A. et al. Possible transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Lancet 363, 417–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Aguzzi, A., Glatzel, M., Montrasio, F., Prinz, M. & Heppner, F. L. Interventional strategies against prion diseases. Nature Rev. Neurosci. 2, 745–749 (2001).

    Article  CAS  Google Scholar 

  113. Will, R. G. et al. A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347, 921–925 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Chazot, G. et al. New variant of Creutzfeldt–Jakob disease in a 26-year-old French man. Lancet 347, 1181 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Aguzzi, A. & Weissmann, C. Spongiform encephalopathies: a suspicious signature. Nature 383, 666–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Hill, A. F., Zeidler, M., Ironside, J. & Collinge, J. Diagnosis of new variant Creutzfeldt–Jakob disease by tonsil biopsy. Lancet 349, 99–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Frigg, R., Klein, M. A., Hegyi, I., Zinkernagel, R. M. & Aguzzi, A. Scrapie pathogenesis in subclinically infected B-cell-deficient mice. J. Virol. 73, 9584–9588 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Houston, F., Foster, J. D., Chong, A., Hunter, N. & Bostock, C. J. Transmission of BSE by blood transfusion in sheep. Lancet 356, 999–1000 (2000). Shows that BSE prion infectivity circulates in the blood and is transmissible by transfusion. It was subsequently reported (reference 111) that a probable case of vCJD was contracted through blood transfusion.

    Article  CAS  PubMed  Google Scholar 

  119. Hunter, N. et al. Transmission of prion diseases by blood transfusion. J. Gen. Virol. 83, 2897–2905 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Glatzel, M. et al. Human prion diseases: epidemiology and integrated risk assessment. Lancet Neurol. 2, 757–763 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Aguzzi, A., Montrasio, F. & Kaeser, P. S. Prions: health scare and biological challenge. Nature Rev. Mol. Cell Biol. 2, 118–126 (2001).

    Article  CAS  Google Scholar 

  122. Hadlow, W. J., Kennedy, R. C., Race, R. E. & Eklund, C. M. Virologic and neurohistologic findings in dairy goats affected with natural scrapie. Vet. Pathol. 17, 187–199 (1980).

    Article  CAS  PubMed  Google Scholar 

  123. Hadlow, W. J. et al. Course of experimental scrapie virus infection in the goat. J. Infect. Dis. 129, 559–567 (1974).

    Article  CAS  PubMed  Google Scholar 

  124. Buyukmihci, N., Rorvik, M. & Marsh, R. F. Replication of the scrapie agent in ocular neural tissues. Proc. Natl Acad. Sci. USA 77, 1169–1171 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pattison, I. H., Hoare, M. N., Jebbett, J. N. & Watson, W. A. Spread of scrapie to sheep and goats by oral dosing with foetal membranes from scrapie-affected sheep. Vet. Rec. 90, 465–468 (1972).

    Article  CAS  PubMed  Google Scholar 

  126. Endres, R. et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin-β receptor by radioresistant stromal cells and of lymphotoxin-β and tumor necrosis factor by B cells. J. Exp. Med. 189, 159–168 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gibbs, C. J. Jr, Amyx, H. L., Bacote, A., Masters, C. L. & Gajdusek, D. C. Oral transmission of kuru, Creutzfeldt–Jakob disease, and scrapie to nonhuman primates. J. Infect. Dis. 142, 205–208 (1980).

    Article  PubMed  Google Scholar 

  128. Gibbs, C. J. Jr & Gajdusek, D. C. Infection as the etiology of spongiform encephalopathy (Creutzfeldt–Jakob disease). Science 165, 1023–1025 (1969).

    Article  PubMed  Google Scholar 

  129. Liberski, P. P. & Mori, S. The Echigo-1: a panencephalopathic strain of Creutzfeldt–Jakob disease: a passage to hamsters and ultrastructural studies. Folia Neuropathol. 35, 250–254 (1997).

    CAS  PubMed  Google Scholar 

  130. Taguchi, Y., Mohri, S., Ironside, J. W., Muramoto, T. & Kitamoto, T. Humanized knock-in mice expressing chimeric prion protein showed varied susceptibility to different human prions. Am. J. Pathol. 163, 2585–2593 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tateishi, J. Transmission of human prion diseases to rodents. Semin. Virol. 7, 175–180 (1996).

    Article  Google Scholar 

  132. Asante, E. A. et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J. 21, 6358–6366 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Brown, D. A., Bruce, M. E. & Fraser, J. R. Comparison of the neuropathological characteristics of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) in mice. Neuropathol. Appl. Neurobiol. 29, 262–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Gajdusek, D. C., Gibbs, C. J. Jr & Alpers, M. Transmission and passage of experimenal 'kuru' to chimpanzees. Science 155, 212–214 (1967). Shows that a human TSE, kuru, is transmissible to chimpanzees. Kuru was endemic in the Fore people of Papua New Guinea and transmitted between individuals through ritualistic cannibalism of the dead.

    CAS  PubMed  Google Scholar 

  135. Tateishi, J. et al. First experimental transmission of fatal familial insomnia. Nature 376, 434–435 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Tateishi, J., Sato, Y., Nagara, H. & Boellaard, J. W. Experimental transmission of human subacute spongiform encephalopathy to small rodents. IV. Positive transmission from a typical case of Gerstmann–Straussler–Scheinker's disease. Acta Neuropathol. 64, 85–88 (1984).

    Article  CAS  PubMed  Google Scholar 

  137. Baker, H. F., Duchen, L. W., Jacobs, J. M. & Ridley, R. M. Spongiform encephalopathy transmitted experimentally from Creutzfeldt–Jakob and familial Gerstmann–Straussler–Scheinker diseases. Brain 113, 1891–1909 (1990).

    Article  PubMed  Google Scholar 

  138. Bruce, M. E. et al. Strain characterization of natural sheep scrapie and comparison with BSE. J. Gen. Virol. 83, 695–704 (2002).

    Article  PubMed  Google Scholar 

  139. Prusiner, S. B., Cochran, S. P. & Alpers, M. P. Transmission of scrapie in hamsters. J. Infect. Dis. 152, 971–978 (1985).

    Article  CAS  PubMed  Google Scholar 

  140. Vilotte, J. L. et al. Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine PrP. J. Virol. 75, 5977–5984 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bartz, J. C., Marsh, R. F., McKenzie, D. I. & Aiken, J. M. The host range of chronic wasting disease is altered on passage in ferrets. Virology 251, 297–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Castilla, J. et al. Early detection of PrPres in BSE-infected bovine PrP transgenic mice. Arch. Virol. 148, 677–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Bons, N. et al. Natural and experimental oral infection of nonhuman primates by bovine spongiform encephalopathy agents. Proc. Natl Acad. Sci. USA 96, 4046–4051 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lasmezas, C. I. et al. BSE transmission to macaques. Nature 381, 743–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Bruce, M. et al. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos. Trans. R. Soc. Lond. B 343, 405–411 (1994).

    Article  CAS  Google Scholar 

  146. Fraser, H. et al. Transmission of feline spongiform encephalopathy to mice. Vet. Rec. 134, 449 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Bessen, R. A. & Marsh, R. F. Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J. Gen. Virol. 73, 329–334 (1992).

    Article  PubMed  Google Scholar 

  148. Polymenidou, M. et al. Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc. Natl Acad. Sci. USA, 3 August 2004 (doi:10.1073/pnas.0404772101).

Download references

Acknowledgements

We thank Markus Glatzel for critical comments. This work is supported by the University of Zürich (Switzerland), and by grants from the Bundesamt für Bildung und Wissenschaft (Switzerland), the Swiss National Foundation, the National Center for Competence in Research on neural plasticity and repair (Switzerland), the United States Department of Defense (National Prion Research Program), the Stammbach Foundation (Switzerland), Nestlé S.A. (Switzerland) and the National Institutes of Health (United States).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriano Aguzzi or Christina J. Sigurdson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CXCR5

IFN-α receptor

IFN-γ receptor

LT-α

LT-βR

MyD88

PrPC

RAG1

TLR9

TNF

TNF receptor

ZAP70

Infectious Disease Information

BSE

CJD

FURTHER INFORMATION

Adriano Aguzzi's homepage

National CJD Surveillance Unit

Glossary

ENCEPHALOPATHIES

A general term for diseases that affect the brain, including metabolic, toxic, traumatic, infectious and neoplastic disorders. Although it is used to describe the lesions that are caused by prion diseases, transmissible spongiform encephalopathies also affect the spinal cord.

SUPEROXIDE DISMUTASE

An antioxidant enzyme that contains zinc, manganese or copper, and protects cells from damage by superoxide radicals.

PRION HYPOTHESIS

Maintains that transmissible spongiform encephalopathies are infectious diseases caused by the conversion of a host-encoded, protease-sensitive protein — known as the prion protein (PrP) — to an abnormal, protease-resistant isoform. The hypothesis also states that the infectious agent is completely devoid of nucleic acids. The abnormal or disease-associated PrP (known as PrPSc) self-aggregates and forms amyloid fibrils. PrPSc has been identified as the main component of the infectivity.

TEMPLATE-DIRECTED REFOLDING

A model for prion conversion in which a single molecule of exogenously introduced abnormal (disease-associated) prion protein (PrPSc) interacts with and converts endogenous cellular prion protein (PrPC) to a PrPSc conformation. Spontaneous conversion is potentially prevented by a high-energy barrier, the crossing of which is required for conversion to amyloidogenic PrPSc.

SEEDING

A prion-conversion model (also known as nucleation), in which cellular prion protein (PrPC) and abnormal (disease-associated) prion protein (PrPSc) are in a thermodynamic equilibrium that favours the PrPC conformation. A highly ordered 'seed' of PrPSc might form, by which monomeric PrPSc can be recruited and stabilized, eventually forming an amyloid fibril. Fragmentation of the PrPSc aggregates increases the number of seeds and the potential for recruiting additional monomeric PrPSc molecules.

TOLL-LIKE RECEPTORS

(TLRs). A rapidly growing family of receptors that recognize pathogen-associated molecular patterns, which are conserved molecular patterns that are common to large groups of microorganisms and/or viruses. For example, TLR4 recognizes bacterial lipopolysaccharide, and TLR5 recognizes bacterial flagellin. Activation signals from TLRs are relayed through cytoplasmic adaptor proteins, leading to the transcription of genes that encode cytokines.

FOLLICULAR DENDRITIC CELLS

(FDCs). Cells with a dendritic morphology that are present in the lymphoid germinal centres, where they present intact antigens (which are either held in immune complexes or associated with complement receptors) to B cells. FDCs are of non-haematopoietic origin and are not related to dendritic cells.

SYMPATHETIC NERVE

A nerve that is part of the functional division of the autonomic nervous system that innervates the heart, lungs, gastrointestinal tract and sweat glands.

PATHOGEN-ASSOCIATED MOLECULAR PATTERN

A molecular pattern that is found in pathogens but not mammalian cells. Examples include terminally mannosylated and polymannosylated compounds, which bind the mannose receptor, and various microbial products, such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA, which bind Toll-like receptors.

UNMETHYLATED CpG MOTIFS

DNA containing an unmethylated cytosine– guanosine sequence. Such sequences are prevalent in bacterial DNA but rare in mammalian DNA. Unmethylated CpG is endocytosed by cells of the innate immune system and interacts with Toll-like receptor 9, activating a signalling cascade that results in the production of pro-inflammatory cytokines.

CYTOKINE STORM

A sudden surge in the circulating levels of pro-inflammatory cytokines, such as interleukin-1, interleukin-6, tumour-necrosis factor and interferon-γ.

BLOOD–BRAIN BARRIER

A barrier that is formed by tight junctions between endothelial cells and markedly limits the entry to the central nervous system of leukocytes and all large molecules, including (to some extent) immunoglobulins, cytokines and complement proteins.

LIPID RAFTS

Specialized membrane domains that are enriched in cholesterol, glycosphingolipids and proteins that function in signal transduction. Rafts are often equated with 'detergent-resistant membranes', which can be isolated by density-gradient centrifugation as a function of their high buoyancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A., Sigurdson, C. Antiprion immunotherapy: to suppress or to stimulate?. Nat Rev Immunol 4, 725–736 (2004). https://doi.org/10.1038/nri1437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing