Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial control of immunity: beyond ATP

Key Points

  • Different immune cell subsets use diverse metabolic pathways. In general, inflammatory and suppressive cells each utilize glycolysis and oxidative phosphorylation for distinct purposes.

  • Mitochondrial metabolism produces a variety of signalling molecules (such as mitochondrial reactive oxygen species (mROS) and acetyl-CoA) that can drive changes in immune cell function through the regulation of transcription factors and epigenetics.

  • mROS are produced by the mitochondrial electron transport chain as a signal to increase interleukin-2 (IL-2) production in T cells and IL-1β production in macrophages.

  • Acetyl-CoA produced by fatty acid oxidation or pyruvate oxidation in mitochondria can be transported by the citrate shuttle into the cytoplasm, where it can be used for fatty acid synthesis or acetylation reactions. These pathways have crucial roles in immune cell function.

  • M1 macrophages use an altered tricarboxylic acid (TCA) cycle and reverse electron transport to drive inflammation through increased succinate and mROS levels. M2 macrophages have an intact TCA cycle and require the function of the hexosamine branch of glycolysis.

  • Cellular metabolism can be altered by drugs that target mitochondria, such as metformin and mitochondria-targeted antioxidants.

Abstract

Mitochondria are important signalling organelles, and they dictate immunological fate. From T cells to macrophages, mitochondria form the nexus of the various metabolic pathways that define each immune cell subset. In this central position, mitochondria help to control the various metabolic decision points that determine immune cell function. In this Review, we discuss how mitochondrial metabolism varies across different immune cell subsets, how metabolic signalling dictates cell fate and how this signalling could potentially be targeted therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important mitochondrial functions and decision points.
Figure 2: T cell metabolism controls immune phenotype.
Figure 3: M1 macrophage metabolism utilizes a 'broken' tricarboxylic acid cycle to drive inflammation.
Figure 4: M2 macrophages require mitochondrial metabolism and glycolysis.
Figure 5: Targeting mitochondrial metabolism as a therapeutic strategy.

Similar content being viewed by others

References

  1. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  4. Michalek, R. D. et al. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc. Natl Acad. Sci. USA 108, 18348–18353 (2011).

    CAS  PubMed  Google Scholar 

  5. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    CAS  PubMed  Google Scholar 

  6. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    CAS  PubMed  Google Scholar 

  7. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). A paper that demonstrates the essential function of mROS that are generated by complex III in T cell activation and antigen-driven responses in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaminski, M. M. et al. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep. 2, 1300–1315 (2012).

    CAS  PubMed  Google Scholar 

  12. Quintana, A. et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl Acad. Sci. USA 104, 14418–14423 (2007).

    CAS  PubMed  Google Scholar 

  13. Tan, H. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, B. et al. MicroRNA-23a curbs necrosis during early T cell activation by enforcing intracellular reactive oxygen species equilibrium. Immunity 44, 568–581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    PubMed  Google Scholar 

  16. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, J. H., Elly, C., Park, Y. & Liu, Y. C. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity 42, 1062–1074 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. MacIver, N. J. et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187–4198 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shriver, L. P. & Manchester, M. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. 1, 79 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  PubMed  Google Scholar 

  24. Newton, R., Priyadharshini, B. & Turka, L. A. Immunometabolism of regulatory T cells. Nat. Immunol. 17, 618–625 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016). An excellent demonstration of how mitochondria-generated citrate pools control histone acetylation and thus affect T cell function

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016). A key paper demonstrating that mitochondrial structure and form dictate T cell function.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Google Scholar 

  30. O'Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016). The first demonstration that S -2HG can control immune responses through epigenetic regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Intlekofer, A. M. et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mullen, A. R. et al. Oxidation of α-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7, 1679–1690 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Champagne, D. P. et al. Fine-tuning of CD8+ T cell mitochondrial metabolism by the respiratory chain repressor MCJ dictates protection to influenza virus. Immunity 44, 1299–1311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Doughty, C. A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Manteiga, J. M. et al. Metabolomics of B to plasma cell differentiation. J. Proteome Res. 10, 4165–4176 (2011).

    CAS  PubMed  Google Scholar 

  40. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, J. L. et al. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat. Commun. 7, 12526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lam, W. Y. et al. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45, 60–73 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Capasso, M. et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat. Immunol. 11, 265–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh, D. K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121, 281–293 (2005).

    CAS  PubMed  Google Scholar 

  45. Wheeler, M. L. & Defranco, A. L. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J. Immunol. 189, 4405–4416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jang, K. J. et al. Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun. 6, 6750 (2015). A paper that describes the essential role of mROS in determining B cell fate.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Heinemann, I. U., Jahn, M. & Jahn, D. The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474, 238–251 (2008).

    CAS  PubMed  Google Scholar 

  48. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin, Z., Wei, W., Yang, M., Du, Y. & Wan, Y. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 20, 483–498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, S. C. et al. Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chandel, N. S., Schumacker, P. T. & Arch, R. H. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J. Biol. Chem. 276, 42728–42736 (2001). An early paper demonstrating that immune receptor signalling is dependent on the ETC.

    CAS  PubMed  Google Scholar 

  54. Hall, C. J. et al. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metab. 18, 265–278 (2013).

    CAS  PubMed  Google Scholar 

  55. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011). An important paper that links TLR signalling to mROS and shows the role of TLR–mROS signalling in macrophage function.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011). An important paper demonstrating that mROS are necessary for hyperinflammatory responses in patients that carry mutations in the gene that encodes TNF receptor type 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015). A key paper demonstrating that pro-inflammatory and anti-inflammatory macrophages have distinct TCA cycles.

    CAS  PubMed  Google Scholar 

  58. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016). A study that provides genetic evidence that itaconate is necessary for pro-inflammatory macrophage function.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016). An important paper demonstrating that succinate-dependent mROS generation is necessary for pro-inflammatory macrophage function.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan, Z. et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082–6089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Meiser, J. et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J. Biol. Chem. 291, 3932–3946 (2016).

    CAS  PubMed  Google Scholar 

  64. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    CAS  PubMed  Google Scholar 

  65. Naujoks, J. et al. IFNs modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog. 12, e1005408 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Kannan, Y. et al. TPL-2 regulates macrophage lipid metabolism and M2 differentiation to control TH2-mediated immunopathology. PLoS Pathog. 12, e1005783 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Mounier, R. et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 18, 251–264 (2013).

    CAS  PubMed  Google Scholar 

  68. Carroll, K. C., Viollet, B. & Suttles, J. AMPKα1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J. Leukoc. Biol. 94, 1113–1121 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Covarrubias, A. J. et al. Akt–mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 5, e11612 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Seth, R. B., Sun, L. & Chen, Z. J. Antiviral innate immunity pathways. Cell Res. 16, 141–147 (2006).

    CAS  PubMed  Google Scholar 

  72. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    CAS  PubMed  Google Scholar 

  73. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). An early paper that links mitochondria to inflammasome activation.

    CAS  PubMed  Google Scholar 

  75. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  PubMed  Google Scholar 

  76. Yu, J. et al. Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proc. Natl Acad. Sci. USA 111, 15514–15519 (2014).

    CAS  PubMed  Google Scholar 

  77. Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, X. et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3–DRP1 signaling pathway. Nat. Immunol. 15, 1126–1133 (2014).

    CAS  PubMed  Google Scholar 

  79. Moriwaki, K. et al. The mitochondrial phosphatase PGAM5 is dispensable for necroptosis but promotes inflammasome activation in macrophages. J. Immunol. 196, 407–415 (2016).

    CAS  PubMed  Google Scholar 

  80. Garaude, J. et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1 037–1045 (2016).

    Google Scholar 

  81. Moon, J. S. et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med. 22, 1002–1012 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1–IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jantsch, J. et al. Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180, 4697–4705 (2008).

    CAS  PubMed  Google Scholar 

  87. Ibrahim, J. et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143, 1061–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rehman, A. et al. Role of fatty-acid synthesis in dendritic cell generation and function. J. Immunol. 190, 4640–4649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, D. et al. Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44, 1325–1336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ferreira, G. B. et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep. 10, 711–725 (2015).

    CAS  PubMed  Google Scholar 

  91. Klotz, L. et al. Peroxisome proliferator-activated receptor γ control of dendritic cell function contributes to development of CD4+ T cell anergy. J. Immunol. 178, 2122–2131 (2007).

    CAS  PubMed  Google Scholar 

  92. Szanto, A. et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 33, 699–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Del Prete, A. et al. Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radic. Biol. Med. 44, 1443–1451 (2008).

    CAS  PubMed  Google Scholar 

  94. Zaccagnino, P. et al. An active mitochondrial biogenesis occurs during dendritic cell differentiation. Int. J. Biochem. Cell Biol. 44, 1962–1969 (2012).

    CAS  PubMed  Google Scholar 

  95. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    CAS  PubMed  Google Scholar 

  97. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mamlouk, S. et al. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development. Int. J. Cancer 134, 849–858 (2014).

    CAS  PubMed  Google Scholar 

  100. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl Med. 7, 277ra30 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    CAS  PubMed  Google Scholar 

  102. Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fletcher, M. et al. L-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75, 275–283 (2015).

    CAS  PubMed  Google Scholar 

  104. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017). A recent paper that shows how metformin can be used in conjunction with checkpoint blockade therapy to augment tumour immunity.

    CAS  PubMed  Google Scholar 

  107. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Fresnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016).

    Google Scholar 

  109. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    CAS  PubMed  Google Scholar 

  110. Tsoyi, K. et al. Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. Br. J. Pharmacol. 162, 1498–1508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, H. & Ko, G. Effect of metformin on metabolic improvement and gut microbiota. Appl. Environ. Microbiol. 80, 5935–5943 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Anisimov, V. N. et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp. Gerontol. 40, 685–693 (2005).

    CAS  PubMed  Google Scholar 

  114. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Singhal, A. et al. Metformin as adjunct antituberculosis therapy. Sci. Transl Med. 6, 263ra159 (2014).

    PubMed  Google Scholar 

  116. Barzilai, N. et al. Metformin as a tool to target aging. Cell Metabolism 23, 1060–1065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kelly, B., Tannahill, G. M., Murphy, M. P. & O'Neill, L. A. Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J. Biol. Chem. 290, 20348–20359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl Med. 7, 274ra18 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, W. et al. The peroxisome proliferator-activated receptor γ agonist pioglitazone improves cardiometabolic risk and renal inflammation in murine lupus. J. Immunol. 183, 2729–2740 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Johnson, K. M. et al. Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. Chem. Biol. 12, 485–496 (2005).

    CAS  PubMed  Google Scholar 

  121. Lee, C. F. et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep. 13, 760–770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gatza, E. et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci. Transl Med. 3, 67ra8 (2011).

    PubMed  PubMed Central  Google Scholar 

  123. Orr, A. L. et al. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11, 834–836 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Brand, M. D. et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia–reperfusion injury. Cell Metab. 24, 582–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (R35 CA197532, PO1 AG04966502 and PO1 HL071643 to N.S.C.; T32 CA9560 to M.M.M.; and T32 T32HL076139 to S.E.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep S. Chandel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mitochondrial permeability transition pores

High-conductance inner mitochondrial membrane channels. Persistent opening of these pores irreversibly commits cells to death by causing mitochondrial depolarization (which blocks oxidative phosphorylation and reactive oxygen species production), matrix swelling and cristae unfolding, and results in the release of stored calcium+ and of apoptogenic proteins.

Mitophagy

A special form of autophagy, in which mitochondria (in a damaged or depolarized state) are engulfed by autophagosomes and degraded.

Autophagy

A cellular process, by which cytoplasmic organelles and macromolecular complexes are engulfed by double membrane-bound vesicles for delivery to lysosomes and subsequent degradation. This process is involved in the constitutive turnover of proteins and organelles, and is central to cellular activities that maintain a balance between the synthesis and breakdown of various proteins.

Pentose phosphate pathway

(PPP). A pathway that uses glucose to generate NADPH and pentose sugars (such as ribose). The first (oxidative) phase converts glucose-6-phosphate to ribulose-5-phosphate and generates NADPH. The second (non-oxidative) phase synthesizes other sugars from ribulose-5-phosphate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, M., Weinberg, S. & Chandel, N. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 17, 608–620 (2017). https://doi.org/10.1038/nri.2017.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.66

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research