Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adult haematopoietic stem cell niches

Key Points

  • Dividing and non-dividing haematopoietic stem cells (HSCs) reside in perivascular niches that are mainly associated with sinusoidal blood vessels in adult bone marrow and spleen.

  • A subset of HSCs is most closely associated with arterioles. The periarteriolar and perisinusoidal microenvironments differ in terms of the capacity of HSCs to intravasate into the circulation and in terms of their exposure to blood plasma components.

  • Endothelial cells and leptin receptor-expressing, CXC-chemokine ligand 12 (CXCL12)-abundant reticular perivascular stromal cells are the main sources of the stem cell factor (SCF) and CXCL12 required for HSC maintenance in normal young-adult bone marrow. Other perivascular cells, such as Ng2-CreER+ periarteriolar cells (which express neural–glial antigen 2), may or may not also synthesize the CXCL12 required for HSC maintenance.

  • Several other cell types — including megakaryocytes, monocytes and macrophages, neurons (specifically, nerve fibres) and Schwann cells — directly or indirectly regulate HSC or niche function through other mechanisms.

  • Extramedullary haematopoiesis in the spleen depends on a perivascular niche that is associated with sinusoids in the red pulp, in which endothelial cells and transcription factor 21-expressing stromal cells are the main sources of SCF and CXCL12. This niche is necessary for the recovery of haematopoiesis from haematopoietic stresses such as blood loss.

  • The vascular and stromal compositions of the bone marrow change during ageing.

Abstract

Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells in vivo, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The vasculature in the bone marrow and its relationship to HSCs.
Figure 2: The expression of stem cell factor in the bone marrow.
Figure 3: A schematic of the HSC niche in adult bone marrow.
Figure 4: Changes in the bone marrow vasculature with age.

Similar content being viewed by others

References

  1. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walter, D. et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520, 549–552 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Jenq, R. R. & van den Brink, M. R. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat. Rev. Cancer 10, 213–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  9. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Nombela-Arrieta, C. et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15, 533–543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013). This paper uses confocal imaging and spatial modelling to show that although most HSCs are closest to sinusoidal blood vessels, some HSCs are more closely associated with arterioles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015). This paper uses optical clearing and a new HSC marker, α -catulin, to localize HSCs throughout large segments of the bone marrow by deep imaging and digital reconstruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016). This study identifies a new HSC marker, Hoxb5 , the expression of which is highly restricted among haematopoietic cells to HSCs and enables the imaging of HSC localization in the bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barker, J. E. Sl/Sld hematopoietic progenitors are deficient in situ. Exp. Hematol. 22, 174–177 (1994).

    CAS  PubMed  Google Scholar 

  17. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012). This study systematically images the Scf expression pattern in the bone marrow then conditionally deletes Scf from candidate niche cells to show that HSCs depend on SCF synthesized by endothelial cells and LEPR+ stromal cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito, K. et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gazit, R. et al. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J. Exp. Med. 211, 1315–1331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tajima, Y. et al. Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method. Sci. Rep. 7, 40684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, J. et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109, 3706–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010). In this study, short-term cell ablation provides evidence that CAR cells are not only an important source of niche factors required for the maintenance of HSCs, but also an important progenitor population for adipocytes and osteoblasts in the bone marrow, which suggests that SSCs are among the stromal cells that synthesize HSC niche factors.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010). This study presents evidence that perivascular Nes -GFP+ cells are an important source of SCF and CXCL12 in the bone marrow, as well as CFU-F activity, which suggests that SSCs are among the stromal cells that synthesize HSC niche factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20, 1315–1320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Hur, J. et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 18, 508–521 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Bowers, M. et al. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125, 2678–2688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ono, N. et al. Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev. Cell 29, 330–339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogawa, M. et al. Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ara, T. et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19, 257–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Kimura, S., Roberts, A. W., Metcalf, D. & Alexander, W. S. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc. Natl Acad. Sci. USA 95, 1195–1200 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qian, H. et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1, 671–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sitnicka, E. et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87, 4998–5005 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Williams, D. E. et al. Identification of a ligand for the c-kit proto-oncogene. Cell 63, 167–174 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Copeland, N. G. et al. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 63, 175–183 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Flanagan, J. G. & Leder, P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63, 185–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Zsebo, K. M. et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell 63, 195–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Martin, F. H. et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 63, 203–211 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Zsebo, K. M. et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63, 213–224 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, E. et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63, 225–233 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Anderson, D. M. et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 63, 235–243 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502–1506 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fleischman, R. A. & Mintz, B. Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta. Proc. Natl Acad. Sci. USA 76, 5736–5740 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barker, J. E. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp. Hematol. 25, 542–547 (1997).

    CAS  PubMed  Google Scholar 

  53. Wolf, N. S. Dissecting the hematopoietic microenvironment. III. Evidence for a positive short range stimulus for cellular proliferation. Cell Tissue Kinet. 11, 335–345 (1978).

    CAS  PubMed  Google Scholar 

  54. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. McDermott, D. H. et al. Chromothriptic cure of WHIM syndrome. Cell 160, 686–699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lai, C. Y. et al. Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation. Stem Cells 32, 1929–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Tzeng, Y. S. et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117, 429–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Nagasawa, T., Kikutani, H. & Kishimoto, T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl Acad. Sci. USA 91, 2305–2309 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nie, Y., Han, Y. C. & Zou, Y. R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med. 205, 777–783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Sauvage, F. J. et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533–538 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Kaushansky, K. et al. Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. Proc. Natl Acad. Sci. USA 92, 3234–3238 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaushansky, K. et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369, 568–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Sungaran, R., Markovic, B. & Chong, B. H. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 89, 101–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Goncalves, K. A. et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166, 894–906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng, J., Huynh, H., Umikawa, M., Silvany, R. & Zhang, C. C. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117, 470–479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao, M. et al. FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood 120, 1831–1842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Itkin, T. et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood 120, 1843–1855 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Bernad, A. et al. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1, 725–731 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Varnum-Finney, B. et al. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest. 121, 1207–1216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Himburg, H. A. et al. Pleiotrophin mediates hematopoietic regeneration via activation of RAS. J. Clin. Invest. 124, 4753–4758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silberstein, L. et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19, 530–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014). In this study, the in vivo measurement of oxygen tension within the bone marrow of live mice shows that the most hypoxic regions in the bone marrow are perisinusoidal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat. Immunol. 6, 1038–1046 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013). Similarly to reference 84, this study uses the conditional deletion of Cxcl12 from candidate niche cells to show that HSCs depend on CXCL12 synthesized by endothelial cells and LEPR+ stromal cells, whereas a subset of lymphoid progenitors depend on CXCL12 synthesized by osteoblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19, 214–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Omatsu, Y., Seike, M., Sugiyama, T., Kume, T. & Nagasawa, T. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508, 536–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Birbrair, A. & Frenette, P. S. Niche heterogeneity in the bone marrow. Ann. NY Acad. Sci. 1370, 82–96 (2016).

    Article  PubMed  Google Scholar 

  82. Sun, M. Y., Yetman, M. J., Lee, T. C., Chen, Y. & Jankowsky, J. L. Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-CreERT2 lines. J. Comp. Neurol. 522, 1191–1208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013). Similarly to reference 78, this study uses the conditional deletion of Cxcl12 from candidate niche cells to show that HSCs depend on CXCL12 synthesized by endothelial cells and PRRX1+ stromal cells (which include LEPR+ cells), whereas a subset of lymphoid progenitors depend on CXCL12 synthesized by osteolineage progenitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Cordeiro Gomes, A. et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity 45, 1219–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jung, Y. et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Isern, J. et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 3, e03696 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016). This paper provides evidence that the perisinusoidal environment is distinct from the periarteriolar environment in the bone marrow because sinusoids are leaky, which allows HSCs to migrate into the circulation and plasma components to leak out.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016). This study shows that the vasculature in the bone marrow changes with age in a manner that has consequences for the HSC niche and that can be modulated by Notch signalling in endothelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becker, R. P. & De Bruyn, P. P. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am. J. Anat. 145, 183–205 (1976).

    Article  CAS  PubMed  Google Scholar 

  93. Tavassoli, M. & Aoki, M. Localization of megakaryocytes in the bone marrow. Blood Cells 15, 3–14 (1989).

    CAS  PubMed  Google Scholar 

  94. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bianco, P. & Robey, P. G. Skeletal stem cells. Development 142, 1023–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chan, C. K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Zhou, B. O., Ding, L. & Morrison, S. J. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. eLife 4, e05521 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chan, C. K. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Worthley, D. L. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamazaki, S. et al. TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113, 1250–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Lucas, D. et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19, 695–703 (2013). This study shows that nerve fibres are required for the regeneration of HSCs after chemotherapy, despite not being required for HSC maintenance in normal steady-state bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Yamazaki, K. & Allen, T. D. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex”. Am. J. Anat. 187, 261–276 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Ludin, A. et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13, 1072–1082 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Mansour, A. et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209, 537–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ono, N., Ono, W., Nagasawa, T. & Kronenberg, H. M. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat. Cell Biol. 16, 1157–1167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Komada, Y. et al. Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS ONE 7, e46436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Takashima, Y. et al. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129, 1377–1388 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Inra, C. N. et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature 527, 466–471 (2015). This paper shows that the niche for EMH in the spleen is required for the regeneration of blood cells after injury, and depends on SCF and CXCL12 synthesized by endothelial cells and TCF21+ stromal cells that are associated with sinusoidal blood vessels in the red pulp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nakada, D. et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. O'Malley, D. P. Benign extramedullary myeloid proliferations. Mod. Pathol. 20, 405–415 (2007).

    Article  PubMed  Google Scholar 

  123. Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465, 793–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Burberry, A. et al. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. Cell Host Microbe 15, 779–791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koch, C. A., Li, C. Y., Mesa, R. A. & Tefferi, A. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin. Proc. 78, 1223–1233 (2003).

    Article  PubMed  Google Scholar 

  126. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Hill, D. A. & Swanson, P. E. Myocardial extramedullary hematopoiesis: a clinicopathologic study. Mod. Pathol. 13, 779–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Dutta, P. et al. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J. Exp. Med. 212, 497–512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–2808 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Johns, J. L. & Borjesson, D. L. Downregulation of CXCL12 signaling and altered hematopoietic stem and progenitor cell trafficking in a murine model of acute Anaplasma phagocytophilum infection. Innate Immun. 18, 418–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Mohty, M. et al. The role of plerixafor in optimizing peripheral blood stem cell mobilization for autologous stem cell transplantation. Leukemia 25, 1–6 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Bittencourt, H. et al. Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA-identical sibling bone marrow transplantation. Blood 99, 2726–2733 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, B. et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21, 577–592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Pruneri, G. et al. Angiogenesis in myelodysplastic syndromes. Br. J. Cancer 81, 1398–1401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hanoun, M. et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, L. et al. Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF-κB-dependent manner. Cell Stem Cell 15, 51–65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dong, L. et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 539, 304–308 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zambetti, N. A. et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19, 613–627 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Pitt, L. A. et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27, 755–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Walters, M. C. et al. Bone marrow transplantation for sickle cell disease. N. Engl. J. Med. 335, 369–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Hoban, M. D., Orkin, S. H. & Bauer, D. E. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 127, 839–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Rhodes, K. E. et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2, 252–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mikkola, H. K. & Orkin, S. H. The journey of developing hematopoietic stem cells. Development 133, 3733–3744 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Khan, J. A. et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351, 176–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Tamplin, O. J. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241–252 (2015). This study uses live imaging of HSC engraftment in the caudal haematopoietic tissue of zebrafish to show that HSCs remodel the perivascular niche and that this involves dynamic interactions with endothelial cells and mesenchymal stromal cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kissa, K. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111, 1147–1156 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Bertrand, J. Y., Cisson, J. L., Stachura, D. L. & Traver, D. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 115, 2777–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Travnickova, J. et al. Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nat. Commun. 6, 6227 (2015).

    Article  PubMed  CAS  Google Scholar 

  160. Avagyan, S. & Zon, L. I. Fish to learn: insights into blood development and blood disorders from zebrafish hematopoiesis. Hum. Gene Ther. 27, 287–294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mahony, C. B., Fish, R. J., Pasche, C. & Bertrand, J. Y. tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 128, 1336–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z. & Morrison, S. J. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Corash, L., Levin, J., Mok, Y., Baker, G. & McDowell, J. Measurement of megakaryocyte frequency and ploidy distribution in unfractionated murine bone marrow. Exp. Hematol. 17, 278–286 (1989).

    CAS  PubMed  Google Scholar 

  165. Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 19, 429–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 14, 821–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Calvo, W. The innervation of the bone marrow in laboratory animals. Am. J. Anat. 123, 315–328 (1968).

    Article  CAS  PubMed  Google Scholar 

  168. Logan, M. et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zou, L. et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 64, 8451–8455 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Singbrant, S. et al. Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 115, 4689–4698 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Crisan, M. et al. BMP signalling differentially regulates distinct haematopoietic stem cell types. Nat. Commun. 6, 8040 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Goldman, D. C. et al. BMP4 regulates the hematopoietic stem cell niche. Blood 114, 4393–4401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R. & Link, D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208, 251–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Smith-Berdan, S., Nguyen, A., Hong, M. A. & Forsberg, E. C. ROBO4-mediated vascular integrity regulates the directionality of hematopoietic stem cell trafficking. Stem Cell Rep. 4, 255–268 (2015).

    Article  CAS  Google Scholar 

  178. Smith-Berdan, S. et al. Robo4 cooperates with Cxcr4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell 8, 72–83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Waterstrat, A., Rector, K., Geiger, H. & Liang, Y. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci. Rep. 6, 31412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Koch, U. et al. Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111, 160–164 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Cobas, M. et al. β-Catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199, 221–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sugimura, R. et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150, 351–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cheng, C. W. et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810–823 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yu, V. W. et al. Distinctive mesenchymal–parenchymal cell pairings govern B cell differentiation in the bone marrow. Stem Cell Rep. 7, 220–235 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose work could not be included owing to space limitations. S.J.M. is a Howard Hughes Medical Institute Investigator; the Mary McDermott Cook Chair in Pediatric Genetics; the Kathryne and Gene Bishop Distinguished Chair in Pediatric Research; and the Director of the Hamon Laboratory for Stem Cells and Cancer at the University of Texas Southwestern Medical Center, USA. G.M.C. was supported by the University of Texas Southwestern Medical Center Physician Scientist Training Program. E.J. is a postdoctoral fellow of the Damon Runyon Cancer Research Foundation. This work was supported by the Cancer Prevention and Research Institute of Texas, USA, and by the US National Institutes of Health (grants R37 AG024945 and R01 DK100848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean J. Morrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Haematopoiesis

The process by which blood cells and immune system cells — including erythrocytes, platelets and white blood cells — are formed from haematopoietic stem cells, which undergo lineage restriction and then differentiation by giving rise to various restricted haematopoietic progenitors.

HSC transplantation

A potentially curative therapy involving the replacement of a patient's blood-forming cells with those from a donor (allogeneic) or with their own cells (autologous) that had been stored before chemotherapy or radiation treatment. This procedure can be carried out by transplanting whole bone marrow cells or enriched populations of haematopoietic stem cells (HSCs), which can be obtained from various sources, including bone marrow, mobilized peripheral blood or umbilical cord blood.

Conditioning regimen

Chemotherapy and/or radiation that ablates endogenous haematopoietic cells before haematopoietic stem cell (HSC) transplantation to facilitate the engraftment of the transplanted HSCs.

Ex vivo expansion

Increasing the number of haematopoietic stem cells (HSCs) that are available for transplantation by growing them in culture. For reasons that are not currently understood, it is not yet possible to considerably or sustainably increase the numbers of HSCs in culture, despite decades of effort.

Signalling lymphocyte activation molecule family markers

(SLAM family markers). A group of cell-surface receptors (including CD150, CD48, CD229 and CD244) that are differentially expressed among haematopoietic stem cells (HSCs) and other haematopoietic progenitors in a manner that enables them to be used to identify HSCs and multipotent progenitors.

Sinusoidal blood vessels

Fenestrated venous blood vessels that are found in haematopoietic tissues and through which haematopoietic cells can migrate into and out of the circulation.

Perivascular niche

A microenvironment in the bone marrow that is located adjacent to a blood vessel and that supports the maintenance of haematopoietic stem cells and/or other haematopoietic progenitors.

Ctnnal1-GFP knock-in mice

A gene-targeted mouse line in which green fluorescent protein (GFP) is knocked into the Ctnnal1 locus (which encodes α-catulin) such that GFP marks α-catulin+ cells, which are highly enriched for haematopoietic stem cells.

Arterioles

In the context of this Review, blood vessels of variable diameter that carry arterial blood into the bone marrow.

Transition zone vessels

In the context of this Review, small blood vessels that connect arterioles to sinusoids in the bone marrow and that are located near the endosteum.

Endosteum

The internal bone surface at the interface between bone and bone marrow.

Hoxb5-mCherry knock-in mice

A gene-targeted mouse line in which the fluorescence marker mCherry is knocked into the Hoxb5 locus (which encodes homeobox b5) such that mCherry marks Hoxb5+ cells, which are highly enriched for haematopoietic stem cells.

CXCL12-abundant reticular cells

(CAR cells). Stromal cells in the bone marrow that are mainly associated with sinusoidal blood vessels and that express high levels of CXC-chemokine ligand 12 (CXCL12), which is an important factor for retaining haematopoietic stem cells in the bone marrow niche.

Leptin receptor-expressing cells

(LEPR+ cells). Stromal cells in the bone marrow that are mainly associated with sinusoidal blood vessels and that express high levels of the crucial haematopoietic stem cell niche factors stem cell factor and CXC-chemokine ligand 12. These cells have commonly been identified using Lepr-Cre recombination systems, but in young-adult bone marrow nearly all of the bone marrow cells that recombine with Lepr-Cre also stain positively with LEPR-specific antibody.

Nes-CreER+ cells

Cells that express a tamoxifen-activated form of Cre recombinase under the control of regulatory elements of Nes (which encodes nestin). The conditional reporter is expressed by rare periarteriolar stromal cells in adult bone marrow but is more widely expressed in early postnatal bone marrow, where it shows widespread expression in endothelial cells, for example.

Ng2-CreER+ cells

Cells that express a tamoxifen-activated form of Cre recombinase from the Ng2 locus (which encodes neural–glial antigen 2). The conditional reporter is expressed by rare periarteriolar stromal cells in adult bone marrow but is much more widely expressed in early postnatal bone marrow.

Skeletal stem cells

(SSCs). A rare self-renewing stem cell population in the bone marrow that has the potential to form osteoblasts, adipocytes and chondrocytes, and that has the physiological function of maintaining the adult skeleton.

Schwann cells

Neural crest-derived cells that include myelinating and non-myelinating glia that are associated with peripheral nerve fibres in the bone marrow.

AMD3100

Also known as plerixafor. A CXC-chemokine receptor 4 (CXCR4) antagonist that is used to promote the mobilization of haematopoietic stem cells by reducing CXC-chemokine ligand 12 (CXCL12)–CXCR4 signalling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crane, G., Jeffery, E. & Morrison, S. Adult haematopoietic stem cell niches. Nat Rev Immunol 17, 573–590 (2017). https://doi.org/10.1038/nri.2017.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing