Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human immune system variation

Key Points

  • Human immune system composition and function are highly variable between healthy individuals, but they are relatively stable over time within a given individual.

  • Human immune systems vary as a consequence of heritable and non-heritable influences, but non-heritable influences explain most of the variation.

  • Understanding the specific factors that shape an individual's immune system is key for understanding immune competence and risk of immune-mediated and infectious diseases.

Abstract

The human immune system is highly variable between individuals but relatively stable over time within a given person. Recent conceptual and technological advances have enabled systems immunology analyses, which reveal the composition of immune cells and proteins in populations of healthy individuals. The range of variation and some specific influences that shape an individual's immune system is now becoming clearer. Human immune systems vary as a consequence of heritable and non-heritable influences, but symbiotic and pathogenic microbes and other non-heritable influences explain most of this variation. Understanding when and how such influences shape the human immune system is key for defining metrics of immunological health and understanding the risk of immune-mediated and infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The blood as a window for global immune system analysis in humans.
Figure 2: Variation in immune cells and proteins.
Figure 3: Distribution of immune system variation in human populations.

Similar content being viewed by others

References

  1. Herrath, von, M. G. & Nepom, G. T. Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J. Exp. Med. 202, 1159–1162 (2005).

    Article  CAS  Google Scholar 

  2. Steinman, R. M. & Mellman, I. Immunotherapy: bewitched, bothered, and bewildered no more. Science 305, 197–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Davis, M. M. A. Prescription for human immunology. Immunity 29, 835–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Germain, R. N. & Schwartzberg, P. L. The human condition: an immunological perspective. Nat. Immunol. 12, 369–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayday, A. C. & Peakman, M. The habitual, diverse and surmountable obstacles to human immunology research. Nat. Immunol. 9, 575–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hagan, T., Nakaya, H. I., Subramaniam, S. & Pulendran, B. Systems vaccinology: enabling rational vaccine design with systems biological approaches. Vaccine 33, 5294–5301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, A. et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc. Natl Acad. Sci. USA 110, 13073–13078 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ráki, M. et al. Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc. Natl Acad. Sci. USA 104, 2831–2836 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brodin, P. Powerful populations respond to viruses and vaccines. Immunity 43, 1035–1037 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015). This systems immunology analysis of healthy human twins revealed that non-heritable influences mainly shape human immune systems and that the influence of heritable factors is limited in most cases. This influence is cumulative over the course of life, which leads to the divergence of the immune systems of monozygotic twin with time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2008). A pioneering systems vaccinology study that revealed novel gene expression signatures, which indicated previously unappreciated pathways activated by vaccination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andres-Terre, M. et al. Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses. Immunity 43, 1199–1211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sobolev, O. et al. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat. Immunol. 17, 204–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsang, J. S. et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157, 499–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carr, E. J. et al. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17, 461–468 (2016). This study revealed a strong effect of co-habitation on immune system variation, emphasizing the importance of shared environmental factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen-Orr, S. S. et al. Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst. 3, 374–384.e4 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dowling, D. J. & Levy, O. Ontogeny of early life immunity. Trends Immunol. 35, 299–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gibbons, D. L. et al. Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. Eur. J. Immunol. 39, 1794–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Gibbons, D. et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat. Med. 20, 1206–1210 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Amenyogbe, N., Levy, O. & Kollmann, T. R. Systems vaccinology: a promise for the young and the poor. Phil. Trans. R. Soc. B, Biol. Sci. 370, 20140340 (2015).

    Article  Google Scholar 

  23. Jiang, N. et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5, 171ra19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goronzy, J. J. & Weyand, C. M. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. Arthritis Res. Ther. 5, 225–234 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michaud, M. et al. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877–882 (2013).

    Article  PubMed  Google Scholar 

  27. Enroth, S., Johansson, Å., Enroth, S. B. & Gyllensten, U. Strong effects of genetic and lifestyle factors on biomarker variation and use of personalized cutoffs. Nat. Commun. 5, 4684 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Furman, D. et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol. Syst. Biol. 9, 659–659 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nakaya, H. I. et al. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity 43, 1186–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moltchanova, E. V., Schreier, N., Lammi, N. & Karvonen, M. Seasonal variation of diagnosis of Type 1 diabetes mellitus in children worldwide. Diabet. Med. 26, 673–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Iikuni, N. et al. What's in season for rheumatoid arthritis patients? Seasonal fluctuations in disease activity. Rheumatology 46, 846–848 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. De Jong, S. et al. Seasonal changes in gene expression represent cell-type composition in whole blood. Hum. Mol. Genet. 23, 2721–2728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Straub, R. H. & Cutolo, M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 56, 399–408 (2007).

    Article  PubMed  Google Scholar 

  35. Cutolo, M. & Straub, R. H. Circadian rhythms in arthritis: hormonal effects on the immune/inflammatory reaction. Autoimmun Rev. 7, 223–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. & O'Neill, L. A. J. Circadian clock proteins and immunity. Immunity 40, 178–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Christiansson, L. et al. The use of multiplex platforms for absolute and relative protein quantification of clinical material. EuPA Open Proteom. 3, 37–47 (2014).

    Article  CAS  Google Scholar 

  40. Roederer, M. et al. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161, 387–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, W. et al. Are there gender differences in severity of ankylosing spondylitis? Results from the PSOAS cohort. Ann. Rheum. Dis. 66, 633–638 (2007).

    Article  PubMed  Google Scholar 

  44. Whitney, A. R. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA 100, 1896–1901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cutolo, M. et al. Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus 13, 635–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl Acad. Sci. USA 111, 869–874 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharya, S. et al. ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Sørensen, T. I., Nielsen, G. G., Andersen, P. K. & Teasdale, T. W. Genetic and environmental influences on premature death in adult adoptees. N. Engl. J. Med. 318, 727–732 (1988).

    Article  PubMed  Google Scholar 

  49. Casanova, J.-L. & Abel, L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat. Rev. Immunol. 4, 55–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Alcaïs, A. et al. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity? Ann. NY Acad. Sci. 1214, 18–33 (2010).

    Article  PubMed  Google Scholar 

  51. Kochi, Y. Genetics of autoimmune diseases: perspectives from genome-wide association studies. Int. Immunol. 28, 155–161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gregersen, P. K. & Olsson, L. M. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol. 27, 363–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pilia, G. et al. Heritability of Cardiovascular and Personality Traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nalls, M. A. et al. Multiple loci are associated with white blood cell phenotypes. PLoS Genet. 7, e1002113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garner, C. P. et al. Replication of celiac disease UK genome-wide association study results in a US population. Hum. Mol. Genet. 18, 4219–4225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Orrù, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 155, 242–256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pascual, V., Farkas, L. & Banchereau, J. Systemic lupus erythematosus: all roads lead to type I interferons. Curr. Opin. Immunol. 18, 676–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kariuki, S. N. & Niewold, T. B. Genetic regulation of serum cytokines in systemic lupus erythematosus. Translat. Res. 155, 109–117 (2010).

    Article  CAS  Google Scholar 

  59. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Niewold, T. B., Hua, J., Lehman, T. J. A., Harley, J. B. & Crow, M. K. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 8, 492–502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matteini, A. M. et al. Novel gene variants predict serum levels of the cytokines IL-18 and IL-1ra in older adults. Cytokine 65, 10–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Ollier, W. E. R. Cytokine genes and disease susceptibility. Cytokine 28, 174–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. De Jager, P. L. et al. ImmVar project: insights and design considerations for future studies of 'healthy' immune variation. Semin. Immunol. 27, 51–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Price, A. L. et al. Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS Genet. 7, e1001317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao, T., Brodin, P., Davis, M. M. & Jojic, V. Drug-induced mRNA signatures are enriched for the minority of genes that are highly heritable. Pac. Symp. Biocomput. 395–406 (2015).

  66. Lee, M. N. et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343, 1246980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ye, C. J. et al. Intersection of population variation and autoimmunity genetics in human T cell activation. Science 345, 1254665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grossman, Z. & Paul, W. E. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc. Natl Acad. Sci. USA 89, 10365–10369 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brodin, P., Kärre, K. & Höglund, P. NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol. 30, 143–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Birney, E., Smith, G. D. & Greally, J. M. Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genet. 12, e1006105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reese, T. A. et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19, 713–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989). The original paper proposing the hygiene hypothesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bach, J.-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  78. Braun-Fahrländer, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002).

    Article  PubMed  Google Scholar 

  79. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arrieta, M.-C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Dalal, S. R. & Chang, E. B. The microbial basis of inflammatory bowel diseases. J. Clin. Invest. 124, 4190–4196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jenq, R. R. et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209, 903–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota Is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, G. J. et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sylwester, A. W. et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673–685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rölle, A. & Brodin, P. Immune adaptation to environmental influence: the case of NK cells and HCMV. Trends Immunol. 37, 233–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Furman, D. et al. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7, 281ra43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Vlaminck, I. et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155, 1178–1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2, 372–377 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Higuchi, T. et al. Current cigarette smoking is a reversible cause of elevated white blood cell count: cross-sectional and longitudinal studies. Prev. Med. Rep. 4, 417–422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ferson, M., Edwards, A., Lind, A., Milton, G. W. & Hersey, P. Low natural killer-cell activity and immunoglobulin levels associated with smoking in human subjects. Int. J. Cancer 23, 603–609 (1979).

    Article  CAS  PubMed  Google Scholar 

  96. Mathews, J. D., Whittingham, S., Hooper, B. M., Mackay, I. R. & Stenhouse, N. S. Association of autoantibodies with smoking, cardiovascular morbidity, and death in the Busselton population. Lancet 2, 754–758 (1973).

    Article  CAS  PubMed  Google Scholar 

  97. Padyukov, L. et al. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 50, 3085–3092 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Chattopadhyay, P. K. & Roederer, M. A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis. Am. J. Transplant. 15, 1155–1161 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. & Davis, M. M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36, 142–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pernemalm, M. & Lehtiö, J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev. Proteom. 11, 431–448 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.B. is supported by a starting grant from the European Research Council, the Swedish Research Council, the Swedish Society for Medical Research, and Karolinska Institutet. M.M.D. is supported by NIH grants U19 AI090019, U19 AI057229 and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Brodin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

ImmPort

FURTHER INFORMATION

Interactive twin data visualization

PowerPoint slides

Glossary

Rheumatoid arthritis

An immunological disorder that is characterized by symmetrical polyarthritis, often progressing to crippling deformation after years of synovitis. It is associated with systemic immune activation, with acute-phase reactants being present in the peripheral blood, as well as rheumatoid factor (immunoglobulins specific for IgG), which forms immune complexes that are deposited in many tissues.

Cortisol

A steroid hormone produced by the adrenal glands and released in response to stress and has a generally suppressive function on the immune system.

Systemic lupus erythematosus

(SLE). An autoimmune disease in which autoantibodies that are specific for DNA, RNA or proteins associated with nucleic acids form immune complexes that damage small blood vessels, especially in the kidney. Patients with SLE generally have abnormal B cell and T cell functions.

Sjogren syndrome

A long-term autoimmune disease affecting mucous membranes and moisture-secreting glands of the eyes and mouth, resulting in decreased production of tears and saliva, but there are also systemic manifestations such as muscle and joint pain and fatigue.

Ankylosing spondylitis

A long-term inflammatory disease, more common in men than women, affecting the joints of the spine causing vertebrae to fuse together.

Hygiene hypothesis

A hypothesis stating that the lack of early childhood exposure to infectious and symbiotic microorganisms increases the susceptibility to allergic diseases later in life, by altering the normal development of the immune system.

Graft–versus–host disease

(GVHD). An immune response mediated by donor T cells contained in a transplanted allograft and directed against the recipient. GVHD is not associated with solid-organ transplantation but can occur with bone marrow or haematopoietic stem cell transplants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodin, P., Davis, M. Human immune system variation. Nat Rev Immunol 17, 21–29 (2017). https://doi.org/10.1038/nri.2016.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing