Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A role for the gut microbiota in IBS

Key Points

  • Animal studies have demonstrated that changes in the gut microbiota result in altered host function, in domains relevant to IBS (gut motility, visceral pain responses, intestinal permeability, and brain function and behaviour)

  • Gut microbiota composition is altered in at least a subset of patients with IBS (most commonly diarrhoea-predominant IBS), but no microbial 'signature' that could act as an IBS biomarker has been identified

  • Considerable interest exists in the ability of bacteria to produce substances that interact with the host to influence gut and brain function, which include fatty acids, tryptophan and neurotransmitters

  • Dysbiosis in IBS is characterized by a loss of microbial diversity and temporal instability; contributing factors include diet, stress, infection, antibiotic usage, immune activation and low-grade inflammation

  • The gut microbiota from patients with IBS, but not healthy individuals, can induce gut dysfunction in mice reminiscent of that seen in IBS, strongly suggesting that the microbiota contributes to the expression of IBS

  • Emerging evidence supports the efficacy of select and limited microbiota-directed therapies in treating IBS, and to date these include prebiotics, probiotics and selected antibiotics

Abstract

The past decade has witnessed an explosion of knowledge regarding the vast microbial community that resides within our intestine—the gut microbiota. The topic has generated great expectations in terms of gaining a better understanding of disorders ranging from IBD to metabolic disorders and obesity. IBS is a condition for which investigators have long been in search of plausible underlying pathogeneses and it is inevitable that altered composition or function of the gut microbiota will be considered as a potential aetiological factor in at least a subset of patients with IBS. This Review describes the evidence implicating the gut microbiota in not only the expression of the intestinal manifestations of IBS, but also the psychiatric morbidity that coexists in up to 80% of patients with IBS. The evidence described herein ranges from proof-of-concept studies in animals to observational studies and clinical trials in humans. The gut microbiota is subject to influences from a diverse range of factors including diet, antibiotic usage, infection and stress. These factors have previously been implicated in the pathophysiology of IBS and further prompt consideration of a role for the gut microbiota in IBS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that contribute to dysbiosis in IBS.

Similar content being viewed by others

References

  1. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Shanahan, F. The colonic microbiota in health and disease. Curr. Opin. Gastroenterol. 29, 49–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Rajilic-Stojanovic, M. Function of the microbiota. Best Pract Res. Clin. Gastroenterol. 27, 5–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Jorgensen, J. & Mortensen, P. B. Utilization of short-chain fatty acids by colonic mucosal tissue strips. A new method of assessing colonic mucosal metabolism. Scand. J. Gastroenterol. 35, 659–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F. & Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. McDermott, A. J. & Huffnagle, G. B. The microbiome and regulation of mucosal immunity. Immunology. http://dx.doi.org/10.1111/imm.12231.

  8. Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota promotes host–microbial symbiosis. Nat. Immunol. 14, 668–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gwee, K. A. et al. Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet 347, 150–153 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Marshall, J. K. et al. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology 131, 445–450 (2006).

    Article  PubMed  Google Scholar 

  11. Neal, K. R., Barker, L. & Spiller, R. C. Prognosis in post-infective irritable bowel syndrome: a six year follow up study. Gut 51, 410–413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spiller, R. C. Inflammation as a basis for functional GI disorders. Best Pract. Res. Clin. Gastroenterol. 18, 641–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Cremonini, F. & Talley, N. J. Irritable bowel syndrome: epidemiology, natural history, health care seeking and emerging risk factors. Gastroenterol. Clin. North Am. 34, 189–204 (2005).

    Article  PubMed  Google Scholar 

  14. Salonen, A., de Vos, W. M. & Palva, A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156, 3205–3215 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Jeffery, I. B., Quigley, E. M., Ohman, L., Simren, M. & O'Toole, P. W. The microbiota link to irritable bowel syndrome: an emerging story. Gut Microbes 3, 572–576 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Durban, A. et al. Instability of the faecal microbiota in diarrhoea-predominant irritable bowel syndrome. FEMS Microbiol. Ecol. 86, 581–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Matto, J. et al. Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome—a longitudinal study in IBS and control subjects. FEMS Immunol. Med. Microbiol. 43, 213–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Maukonen, J. et al. Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. J. Med. Microbiol. 55, 625–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    Article  PubMed  Google Scholar 

  20. Rajilic-Stojanovic, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Bourdu, S. et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology 128, 1996–2008 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kamath, P. S., Phillips, S. F. & Zinsmeister, A. R. Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology 95, 1496–1502 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Tana, C. et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil. 22, 512–519 (2010).

    CAS  PubMed  Google Scholar 

  24. Christl, S. U., Murgatroyd, P. R., Gibson, G. R. & Cummings, J. H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102, 1269–1277 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Dridi, B., Raoult, D. & Drancourt, M. Archaea as emerging organisms in complex human microbiomes. Anaerobe 17, 56–63 (2011).

    Article  PubMed  Google Scholar 

  26. Kim, G. et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig. Dis. Sci. 57, 3213–3218 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Pimentel, M. et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1089–G1095 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Furnari, M. et al. Reassessment of the role of methane production between irritable bowel syndrome and functional constipation. J. Gastrointestin. Liver Dis. 21, 157–163 (2012).

    PubMed  Google Scholar 

  29. Pimentel, M. et al. Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig. Dis. Sci. 48, 86–92 (2003).

    Article  PubMed  Google Scholar 

  30. Abrahamsson, H. Gastrointestinal motility in patients with the irritable bowel syndrome. Scand. J. Gastroenterol. Suppl 130, 21–26 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Pimentel, M., Chow, E. J. & Lin, H. C. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 95, 3503–3506 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Pimentel, M., Soffer, E. E., Chow, E. J., Kong, Y. & Lin, H. C. Lower frequency of MMC is found in IBS subjects with abnormal lactulose breath test, suggesting bacterial overgrowth. Dig. Dis. Sci. 47, 2639–2643 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Pyleris, E. et al. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig. Dis. Sci. 57, 1321–1329 (2012).

    Article  PubMed  Google Scholar 

  34. Posserud, I., Stotzer, P. O., Bjornsson, E. S., Abrahamsson, H. & Simren, M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut 56, 802–808 (2007).

    Article  PubMed  Google Scholar 

  35. Spiegel, B. M. Questioning the bacterial overgrowth hypothesis of irritable bowel syndrome: an epidemiologic and evolutionary perspective. Clin. Gastroenterol. Hepatol. 9, 461–469 (2011).

    Article  PubMed  Google Scholar 

  36. Husebye, E., Hellstrom, P. M., Sundler, F., Chen, J. & Midtvedt, T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G368–G380 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Verdu, E. F. et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55, 182–190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ohman, L. & Simren, M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 7, 163–173 (2010).

    Article  PubMed  Google Scholar 

  41. Collins, S. M. Is the irritable gut an inflamed gut? Scand. J. Gastroenterol. Suppl. 192, 102–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Ford, A. C. & Talley, N. J. Mucosal inflammation as a potential etiological factor in irritable bowel syndrome: a systematic review. J. Gastroenterol. 46, 421–431 (2011).

    Article  PubMed  Google Scholar 

  43. Lyra, A. et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J. Gastroenterol. 15, 5936–5945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Article  PubMed  Google Scholar 

  46. Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 96, 557–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Collins, S. M., Kassam, Z. & Bercik, P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr. Opin. Microbiol. 16, 240–245 (2013).

    Article  PubMed  Google Scholar 

  49. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 204 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann, C. et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect. Immun. 77, 4668–4678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    Article  PubMed  Google Scholar 

  52. Villani, A. C. et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology 138, 1502–1513 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Marshall, J. K. et al. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment. Pharmacol. Ther. 20, 1317–1322 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Spiller, R. C. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47, 804–811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gwee, K. A. et al. Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome. Gut 52, 523–526 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berman, S. et al. Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome. Neuroimage 63, 1854–1863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bailey, M. T. & Coe, C. L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 35, 146–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Knowles, S. R., Nelson, E. A. & Palombo, E. A. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol. Psychol. 77, 132–137 (2008).

    Article  PubMed  Google Scholar 

  60. Park, A. J. et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol. Motil. 25, 733–e575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heitkemper, M. et al. Increased urine catecholamines and cortisol in women with irritable bowel syndrome. Am. J. Gastroenterol. 91, 906–913 (1996).

    CAS  PubMed  Google Scholar 

  62. Lyte, M., Vulchanova, L. & Brown, D. R. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res. 343, 23–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Russell, S. L. et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4, 158–164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Mendall, M. A. & Kumar, D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur. J. Gastroenterol. Hepatol. 10, 59–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Villarreal, A. A., Aberger, F. J., Benrud, R. & Gundrum, J. D. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ 111, 17–20 (2012).

    PubMed  Google Scholar 

  69. Bohn, L., Storsrud, S., Tornblom, H., Bengtsson, U. & Simren, M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 108, 634–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  Google Scholar 

  72. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Simren, M., Abrahamsson, H. & Bjornsson, E. S. An exaggerated sensory component of the gastrocolonic response in patients with irritable bowel syndrome. Gut 48, 20–27 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barkhordari, E. et al. Proinflammatory cytokine gene polymorphisms in irritable bowel syndrome. J. Clin. Immunol. 30, 74–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Gonsalkorale, W. M., Perrey, C., Pravica, V., Whorwell, P. J. & Hutchinson, I. V. Interleukin 10 genotypes in irritable bowel syndrome: evidence for an inflammatory component? Gut 52, 91–93 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van der Veek, P. P., van den Berg, M., de Kroon, Y. E., Verspaget, H. W. & Masclee, A. A. Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am. J. Gastroenterol. 100, 2510–2516 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Ong, D. K. et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J. Gastroenterol. Hepatol. 25, 1366–1373 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Hoveyda, N. et al. A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. BMC Gastroenterol. 9, 15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. McFarland, L. V. & Dublin, S. Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World J. Gastroenterol. 14, 2650–2661 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Moayyedi, P. et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59, 325–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Ortiz-Lucas, M., Tobias, A., Saz, P. & Sebastian, J. J. Effect of probiotic species on irritable bowel syndrome symptoms: a bring up to date meta-analysis. Rev. Esp. Enferm. Dig. 105, 19–36 (2013).

    Article  PubMed  Google Scholar 

  83. Whelan, K. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr. Opin. Clin. Nutr. Metab. Care 14, 581–587 (2011).

    Article  PubMed  Google Scholar 

  84. Aureli, P. et al. Probiotics and health: an evidence-based review. Pharmacol. Res. 63, 366–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Corridoni, D. et al. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS ONE 7, e42067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Vitali, B. et al. An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe 18, 386–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Brasili, E. et al. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 induce different age-related metabolic profiles revealed by 1H-NMR spectroscopy in urine and feces of mice. J. Nutr. 143, 1549–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Cox, M. J. et al. Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS ONE 5, e8745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ki Cha, B. et al. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J. Clin. Gastroenterol. 46, 220–227 (2012).

    Article  PubMed  Google Scholar 

  91. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104 (Suppl. 2), S1–S63 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Silk, D. B., Davis, A., Vulevic, J., Tzortzis, G. & Gibson, G. R. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 29, 508–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Halmos, E. P., Power, V. A., Shepherd, S. J., Gibson, P. R. & Muir, J. G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Darkoh, C. et al. Bile acids improve the antimicrobial effect of rifaximin. Antimicrob. Agents Chemother. 54, 3618–3624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Menees, S. B., Maneerattannaporn, M., Kim, H. M. & Chey, W. D. The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 107, 28–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Pimentel, M. Review of rifaximin as treatment for SIBO and IBS. Expert Opin. Investig. Drugs 18, 349–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Collins, S. M. The immunomodulation of enteric neuromuscular function: implications for motility and inflammatory disorders. Gastroenterology 111, 1683–1699 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    Article  PubMed  Google Scholar 

  100. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Nutten, S. et al. Antibiotic administration early in life impairs specific humoral responses to an oral antigen and increases intestinal mast cell numbers and mediator concentrations. Clin. Vaccine Immunol. 14, 190–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Crouzet, L. et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol. Motil. 25, e272–e282 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Ohman, L., Isaksson, S., Lundgren, A., Simren, M. & Sjovall, H. A controlled study of colonic immune activity and β7+ blood T lymphocytes in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 980–986 (2005).

    Article  PubMed  Google Scholar 

  104. Rodriguez-Fandino, O. et al. Intestinal recruiting and activation profiles in peripheral blood mononuclear cells in response to pathogen-associated molecular patterns stimulation in patients with IBS. Neurogastroenterol. Motil. 25, 872–e699 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Brint, E. K., MacSharry, J., Fanning, A., Shanahan, F. & Quigley, E. M. Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am. J. Gastroenterol. 106, 329–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Belmonte, L. et al. Role of toll like receptors in irritable bowel syndrome: differential mucosal immune activation according to the disease subtype. PLoS ONE 7, e42777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McKernan, D. P., Gaszner, G., Quigley, E. M., Cryan, J. F. & Dinan, T. G. Altered peripheral toll-like receptor responses in the irritable bowel syndrome. Aliment. Pharmacol. Ther. 33, 1045–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Langhorst, J. et al. Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am. J. Gastroenterol. 104, 404–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Macsharry, J. et al. Mucosal cytokine imbalance in irritable bowel syndrome. Scand. J. Gastroenterol. 43, 1467–1476 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Bashashati, M. et al. Cytokine gene polymorphisms are associated with irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 24, 1102–e566 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. O'Mahony, L. et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128, 541–551 (2005).

    Article  PubMed  Google Scholar 

  112. Ness, T. J. & Gebhart, G. F. Visceral pain: a review of experimental studies. Pain 41, 167–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Chassard, C. et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment. Pharmacol. Ther. 35, 828–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Bercik, P. et al. Transfer of IBS phenotype to GERM-free mice through microbiota transplantation. Neurogastroenterol. Motility 24, 33–33 (2012).

    Article  CAS  Google Scholar 

  115. Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Freestone, P. P., Sandrini, S. M., Haigh, R. D. & Lyte, M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 16, 55–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Ouwerkerk, J. P., de Vos, W. M. & Belzer, C. Glycobiome: bacteria and mucus at the epithelial interface. Best Pract. Res. Clin. Gastroenterol. 27, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Collins, S. M., Surette, M. & Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10, 735–742 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M.C. acknowledges the Canadian Institutes for Health Research for support of his research cited in this Review. S.M.C. is the recipient of the GlaxoSmithKline Chair in Gastroenterology Research and a founding member of the Farncombe Family Digestive Health Research Institute at McMaster University, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Collins.

Ethics declarations

Competing interests

S.M.C. receives a grant in aid from the Nestle Research Centre, Switzerland, and consults for Salix Inc.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, S. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol 11, 497–505 (2014). https://doi.org/10.1038/nrgastro.2014.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing