Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic mechanisms and modifying factors in hereditary hemochromatosis

Abstract

Primary iron overload is one of the most common inherited diseases worldwide. Several genetic mutations underlie the various forms of the disease, which have similar pathophysiological profiles but distinct clinical presentations. Patients with hereditary hemochromatosis absorb too much iron from the diet, which accumulates over time within parenchymal cells. This accumulation leads to eventual organ failure as a consequence of iron-mediated formation of free radicals. The mechanism underlying this excessive absorption of iron is a sensing defect caused by the reduced formation of hepcidin, the master regulator of iron homeostasis, as a consequence of mutations in the genes encoding several membrane-bound signaling molecules present on hepatocytes. A considerable number of carriers of these specific genetic mutations, however, do not develop iron overload, indicating that additional genetic and environmental factors modify the severity and clinical penetrance of disease. In affected patients, early initiation of treatment by phlebotomy can prevent organ damage. Genetic screening of first-degree relatives can be also used to identify individuals at risk. Our expanding knowledge of the regulation of iron metabolism and the role of factors that modify the severity of the disease may lead to the design of new and improved treatments.

Key Points

  • Hereditary hemochromatosis is a common genetic disorder that has various forms and is easy to diagnose

  • Although the different forms of hereditary hemochromatosis have similar phenotypes, they are caused by different genetic defects

  • Patients with hereditary hemochromatosis produce reduced amounts of the master regulator of iron homeostasis, hepcidin, resulting in increased dietary iron absorption and accumulation in tissues

  • If untreated, hereditary hemochromatosis can result in progressive organ failure and death, whereas early initiation of treatment is associated with a normal life expectancy

  • Genetic and environmental factors can modify the clinical penetrance and severity of hereditary hemochromatosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of circulating iron by hepcidin.
Figure 2: Regulation of hepcidin expression in hepatocytes under steady-state conditions and hereditary hemochromatosis.
Figure 3: Genetic and environmental modifiers of iron loading in hereditary hemochromatosis.

Similar content being viewed by others

References

  1. Olynyk, J. K., Trinder, D., Ramm, G. A., Britton, R. S. & Bacon, B. R. Hereditary hemochromatosis in the post-HFE era. Hepatology 48, 991–1001 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Pietrangelo, A. Hereditary hemochromatosis—a new look at an old disease. N. Engl. J. Med. 350, 2383–2397 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, P. C. & Barton, J. C. Haemochromatosis. Lancet 370, 1855–1860 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, G. J. & Powell, L. W. HFE and non-HFE hemochromatosis. Int. J. Hematol. 76, 203–207 (2002).

    Article  PubMed  Google Scholar 

  5. Feder, J. N. et al. A novel MHC class I–like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Brissot, P. et al. Current approach to hemochromatosis. Blood Rev. 22, 195–210 (2008).

    Article  PubMed  Google Scholar 

  7. Kowdley, K. V. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127 (Suppl. 1), S79–S86 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Bacon, B. R. & Britton, R. S. Clinical penetrance of hereditary hemochromatosis. N. Engl. J. Med. 358, 291–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Knutson, M. D., Vafa, M. R., Haile, D. J. & Wessling-Resnick, M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood 102, 4191–4197 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Delaby, C., Pilard, N., Puy, H. & Canonne-Hergaux, F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem. J. 411, 123–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Frazer, D. M. & Anderson, G. J. The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol. Dis. 30, 288–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Cook, J. D., Dassenko, S. A. & Lynch, S. R. Assessment of the role of nonheme-iron availability in iron balance. Am. J. Clin. Nutr. 54, 717–722 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Shayeghi, M. et al. Identification of an intestinal heme transporter. Cell 122, 789–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Qiu, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917–928 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Zoller, H. et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120, 1412–1419 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Donovan, A. et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell. Metab. 1, 191–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ludwiczek, S., Theurl, I., Bahram, S., Schumann, K. & Weiss, G. Regulatory networks for the control of body iron homeostasis and their dysregulation in HFE mediated hemochromatosis. J. Cell. Physiol. 204, 489–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Valore, E. V. & Ganz, T. Posttranslational processing of hepcidin in human hepatocytes is mediated by the prohormone convertase furin. Blood Cells Mol. Dis. 40, 132–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pigeon, C. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811–7819 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Nicolas, G. et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest. 110, 1037–1044 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat. Genet. 36, 77–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Niederkofler, V., Salie, R. & Arber, S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J. Clin. Invest. 115, 2180–2186 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, F. W., Pinkus, J. L., Pinkus, G. S., Fleming, M. D. & Andrews, N. C. A mouse model of juvenile hemochromatosis. J. Clin. Invest. 115, 2187–2191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Babitt, J. L. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Truksa, J., Peng, H., Lee, P. & Beutler, E. Different regulatory elements are required for response of hepcidin to interleukin-6 and bone morphogenetic proteins 4 and 9. Br. J. Haematol. 139, 138–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, L. et al. Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood 110, 2182–2189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andriopoulos, B. Jr et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41, 482–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meynard, D. et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 41, 478–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Xia, Y., Babitt, J. L., Sidis, Y., Chung, R. T. & Lin, H. Y. Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 111, 5195–5204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kautz, L. et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112, 1503–1509 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Arndt, S. et al. Iron-induced expression of BMP6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo. Gastroenterology doi:10.1053/j.gastro.2009.09.048

    Article  CAS  PubMed  Google Scholar 

  36. Babitt, J. L. et al. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J. Clin. Invest. 117, 1933–1939 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, R. H. et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell. Metab. 2, 399–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, A. S., Yang, F., Wang, J., Tsukamoto, H. & Enns, C. A. Hemojuvelin–neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J. Biol. Chem. 284, 22580–22589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pagani, A., Silvestri, L., Nai, A. & Camaschella, C. Hemojuvelin N-terminal mutants reach the plasma membrane but do not activate the hepcidin response. Haematologica 93, 1466–1472 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Roetto, A. et al. Screening hepcidin for mutations in juvenile hemochromatosis: identification of a new mutation (C70R). Blood 103, 2407–2409 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Island, M. L. et al. A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phenotype in HFE related hemochromatosis. Haematologica 94, 720–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casanovas, G., Mleczko-Sanecka, K., Altamura, S., Hentze, M. W. & Muckenthaler, M. U. Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. J. Mol. Med. 87, 471–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Bennett, M. J., Lebron, J. A. & Bjorkman, P. J. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403, 46–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Walsh, A. et al. The clinical relevance of compound heterozygosity for the C282Y and H263D substitutions in hemochromatosis. Clin. Gastroenterol. Hepatol. 4, 1403–1410 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Moirand, R. et al. HFE based re-evaluation of heterozygous hemochromatosis. Am. J. Med. Genet. 111, 356–361 (2002).

    Article  PubMed  Google Scholar 

  46. Gurrin, L. C. et al. HFE C282Y/H263D compound heterozygotes are at low risk of hemochromatosis-related morbidity. Hepatology 50, 94–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Chua, A. C. et al. The role of Hfe in transferrin-bound iron uptake by hepatocytes. Hepatology 47, 1737–1744 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Vujic Spasic, M. et al. Hfe acts in hepatocytes to prevent hemochromatosis. Cell. Metab. 7, 173–178 (2008).

    Article  PubMed  CAS  Google Scholar 

  49. Schmidt, P. J., Toran, P. T., Giannetti, A. M., Bjorkman, P. J. & Andrews, N. C. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell. Metab. 7, 205–214 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gao, J. et al. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell. Metab. 9, 217–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nemeth, E., Roetto, A., Garozzo, G., Ganz, T. & Camaschella, C. Hepcidin is decreased in TFR2 hemochromatosis. Blood 105, 1803–1806 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Fleming, R. E. et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc. Natl Acad. Sci. USA 99, 10653–10658 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kautz, L. et al. BMP/Smad signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood 144, 2515–2520 (2009).

    Article  CAS  Google Scholar 

  54. Corradini, E. et al. Bone morphogenetic protein signaling is impaired in a HFE knockout mouse model of hemochromatosis. Gastroenterology 137, 1489–1497 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ramey, G., Deschemin, J. C. & Vaulont, S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica 94, 765–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wallace, D. F. et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology doi:10.1002/hep.23198

    Article  CAS  PubMed  Google Scholar 

  57. Pietrangelo, A. et al. Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology 128, 470–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, P. L. & Beutler, E. Regulation of hepcidin and iron-overload disease. Annu. Rev. Pathol. 4, 489–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Drakesmith, H. et al. Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood 106, 1092–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Montosi, G. et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest. 108, 619–623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gordeuk, V. R. et al. Iron overload in Africans and African-Americans and a common mutation in the SCL40A1 (ferroportin 1). Blood Cells Mol. Dis. 31, 299–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Njajou, O. T. et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet. 28, 213–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Lok, C. Y. et al. Iron overload in the Asian community. Blood 114, 20–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Adams, P. C. et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med. 352, 1769–1778 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Arden, K. E. et al. A novel mutation in ferroportin1 is associated with haemochromatosis in a Solomon Islands patient. Gut 52, 1215–1217 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wallace, D. F. et al. A novel mutation in ferroportin implicated in iron overload. J. Hepatol. 46, 921–926 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Weinberg, E. D. Survival advantage of the hemochromatosis C282Y mutation. Perspect. Biol. Med. 51, 98–102 (2008).

    Article  PubMed  Google Scholar 

  68. Cairo, G. et al. Inappropriately high iron regulatory protein activity in monocytes of patients with genetic hemochromatosis. Blood 89, 2546–2553 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Oexle, H. et al. Pathways for the regulation of interferon-gamma-inducible genes by iron in human monocytic cells. J. Leukoc. Biol. 74, 287–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Nairz, M. et al. Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114, 3642–3651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olakanmi, O., Schlesinger, L. S. & Britigan, B. E. Hereditary hemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages. J. Leukoc. Biol. 81, 195–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Pedersen, P. & Milman, N. Genetic screening for HFE hemochromatosis in 6,020 Danish men: penetrance of C282Y, H263D, and S65C variants. Ann. Hematol. 88, 775–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Gurrin, L. C. et al. The natural history of serum iron indices for HFE C282Y homozygosity associated with hereditary hemochromatosis. Gastroenterology 135, 1945–1952 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ajioka, R. S. & Kushner, J. P. Clinical consequences of iron overload in hemochromatosis homozygotes. Blood 101, 3351–3353 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Andersen, R. V., Tybjaerg-Hansen, A., Appleyard, M., Birgens, H. & Nordestgaard, B. G. Hemochromatosis mutations in the general population: iron overload progression rate. Blood 103, 2914–2919 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Allen, K. J. et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N. Engl. J. Med. 358, 221–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Wood, M. J., Powell, L. W. & Ramm, G. A. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood 111, 4456–4462 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Dupic, F. et al. Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 122, 745–751 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Levy, J. E., Montross, L. K. & Andrews, N. C. Genes that modify the hemochromatosis phenotype in mice. J. Clin. Invest. 105, 1209–1216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ludwiczek, S., Theurl, I., Artner-Dworzak, E., Chorney, M. & Weiss, G. Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J. Mol. Med. 82, 373–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Altes, A. et al. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene. Ann. Hematol. 88, 951–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Milet, J. et al. Common variants in the BMP2, BMP4, and HJV genes of the hepcidin regulation pathway modulate HFE hemochromatosis penetrance. Am. J. Hum. Genet. 81, 799–807 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rivers, C. A. et al. Association of ferroportin Q248H polymorphism with elevated levels of serum ferritin in African Americans in the Hemochromatosis and Iron Overload Screening (HEIRS) Study. Blood Cells Mol. Dis. 38, 247–252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tanno, T. et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 13, 1096–1101 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Du, X. et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088–1092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Silvestri, L. et al. The serine protease matriptase–2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell. Metab. 8, 502–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanno, T. et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 114, 181–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang, H., Constante, M., Layoun, A. & Santos, M. M. Contribution of STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing stimuli. Blood 113, 3593–3599 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Constantine, C. C. et al. SNP selection for genes of iron metabolism in a study of genetic modifiers of hemochromatosis. BMC Med. Genet. 9, 18 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kim, B. E., Nevitt, T. & Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4, 176–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Gouya, L. et al. Genetic study of variation in normal mouse iron homeostasis reveals ceruloplasmin as an HFE-hemochromatosis modifier gene. Gastroenterology 132, 679–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Tolosano, E. et al. Haptoglobin modifies the hemochromatosis phenotype in mice. Blood 105, 3353–3355 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Constantine, C. C. et al. A novel association between a SNP in CYBRD1 and serum ferritin levels in a cohort study of HFE hereditary haemochromatosis. Br. J. Haematol. 147, 140–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shah, Y. M., Matsubara, T., Ito, S., Yim, S. H. & Gonzalez, F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell. Metab. 9, 152–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mastrogiannaki, M. et al. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harrison-Findik, D. D. et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J. Biol. Chem. 281, 22974–22982 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Duane, P., Raja, K. B., Simpson, R. J. & Peters, T. J. Intestinal iron absorption in chronic alcoholics. Alcohol Alcohol. 27, 539–544 (1992).

    CAS  PubMed  Google Scholar 

  98. Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y. & Kato, J. Iron overload and cofactors with special reference to alcohol, hepatitis C virus infection and steatosis/insulin resistance. World J. Gastroenterol. 13, 4699–4706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Flanagan, J. M., Peng, H. & Beutler, E. Effects of alcohol consumption on iron metabolism in mice with hemochromatosis mutations. Alcohol Clin. Exp. Res. 31, 138–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Wallace, D. F. & Subramaniam, V. N. Co-factors in liver disease: The role of HFE-related hereditary hemochromatosis and iron. Biochim. Biophys. Acta 1790, 663–670 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Fargion, S. et al. Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients at risk for nonalcoholic steatohepatitis. Am. J. Gastroenterol. 96, 2448–2455 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Younossi, Z. M. et al. Hepatic iron and nonalcoholic fatty liver disease. Hepatology 30, 847–850 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Aigner, E. et al. Pathways underlying iron accumulation in human nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 87, 1374–1383 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Jacobs, E. M. et al. Severity of iron overload of proband determines serum ferritin levels in families with HFE-related hemochromatosis: the HEmochromatosis FAmily Study. J. Hepatol. 50, 174–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Powell, E. E. et al. Steatosis is a cofactor in liver injury in hemochromatosis. Gastroenterology 129, 1937–1943 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Piperno, A. et al. Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis. Blood 110, 4096–4100 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Milward, E. A. et al. Noncitrus fruits as novel dietary environmental modifiers of iron stores in people with or without HFE gene mutations. Mayo Clin. Proc. 83, 543–549 (2008).

    Article  PubMed  Google Scholar 

  108. Aigner, E. et al. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 135, 680–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Golubov, J., Flanagan, P. & Adams, P. Inhibition of iron absorption by omeprazole in rat model. Dig. Dis. Sci. 36, 405–408 (1991).

    Article  CAS  PubMed  Google Scholar 

  110. Hutchinson, C., Geissler, C. A., Powell, J. J. & Bomford, A. Proton pump inhibitors suppress absorption of dietary non-haem iron in hereditary haemochromatosis. Gut 56, 1291–1295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ludwiczek, S. et al. Ca(2+) channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat. Med. 13, 448–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Nishina, S. et al. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 134, 226–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Tung, B. Y. et al. Hepatitis C, iron status, and disease severity: relationship with HFE mutations. Gastroenterology 124, 318–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Gehrke, S. G. et al. Hemochromatosis and transferrin receptor gene polymorphisms in chronic hepatitis C: impact on iron status, liver injury and HCV genotype. J. Mol. Med. 81, 780–787 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Kazemi-Shirazi, L. et al. The relation of iron status and hemochromatosis gene mutations in patients with chronic hepatitis C. Gastroenterology 116, 127–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Theurl, I. et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood 113, 5277–5286 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Pantopoulos, K. & Hentze, M. W. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 14, 2917–2924 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cheng, R. et al. Differences in hepatic phenotype between hemochromatosis patients with HFE C282Y homozygosity and other HFE genotypes. J. Clin. Gastroenterol. 43, 569–573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mair, S. M. & Weiss, G. New pharmacological concepts for the treatment of iron overload disorders. Curr. Med. Chem. 16, 576–590 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, G. Genetic mechanisms and modifying factors in hereditary hemochromatosis. Nat Rev Gastroenterol Hepatol 7, 50–58 (2010). https://doi.org/10.1038/nrgastro.2009.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing