Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human genetics and disease

Beyond Mendel: an evolving view of human genetic disease transmission

Key Points

  • Traditionally, genetic disorders have been classified as monogenic (involving one gene) or complex (involving many genes and their interaction with each other and the environment).

  • The identification of numerous disease genes has revealed that the pattern of transmission of certain genetic diseases deviates from the monogenic model.

  • Oligogenic disorders manifest a spectrum of complexity ranging from the phenotypic modification of a single allele by an allele at another locus, to complex gene and protein relationships.

  • Traditional tools for investigating complex relationships between genes can be successful in establishing the oligogenic basis of a genetic disorder and for modelling oligogenic traits using Mendelian principles.

  • The establishment of oligogenic behaviour and the expansion of models to explain the inheritance of disease alleles can catalyse the discovery of new disease genes through functional approaches.

  • In the absence of functional assays or an animal model, oligogenic mutations are often subtle and more difficult to recognize.

  • The molecular basis of oligogenicity requires a direct or indirect interaction of mutated proteins. These interactions might be due to the presence of multi-protein complexes, pleiotropic signalling pathways, complementary pathways or overlapping networks of protein function.

Abstract

Methodological and conceptual advances in human genetics have led to the identification of an impressive number of human disease genes. This wealth of information has also revealed that the traditional distinction between Mendelian and complex disorders might sometimes be blurred. Genetic and mutational data on an increasing number of disorders have illustrated how phenotypic effects can result from the combined action of alleles in many genes. In this review, we discuss how an improved understanding of the genetic basis of multilocus inheritance is catalysing the transition from a segmented view of human genetic disease to a conceptual continuum between Mendelian and complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexity in monogenic diseases.
Figure 2: Idealized pedigrees showing examples of complex phenotypic modulation.
Figure 3: Triallelic inheritance.
Figure 4: Models of non-allelic complementation.
Figure 5: Idealized pathway-complementation schemes.

Similar content being viewed by others

References

  1. Scriver, C. R. & Waters, P. J. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 15, 267–272 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Dipple, K. M. & McCabe, E. R. B. Phenotypes of patients with 'simple' Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66, 1729–1735 (2000).Illustrates the increasing levels of complexity that are seen in 'simple' Mendelian disorders and presents thresholds models to correlate mutations with phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dipple, K. M. & McCabe, E. R. B. Modifier genes convert 'simple' Mendelian disorders to complex traits. Mol. Genet. Metab. 71, 43–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Weiss, K. M. Is there a paradigm shift in genetics? Lessons from the study of human diseases. Mol. Phylogenet. Evol. 5, 259–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Jervis, G. A. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proc. Soc. Exp. Biol. Med. 82, 514–515 (1953).

    CAS  PubMed  Google Scholar 

  6. Guthrie, R. & Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).

    CAS  PubMed  Google Scholar 

  7. Guthrie, R. The introduction of newborn screening for phenylketonuria: a personal history. Eur. J. Pediat. 155, 4–5 (1996).

    Article  Google Scholar 

  8. Scriver, C. R. Whatever happened to PKU? Clin. Biochem. 28, 137–144 (1995). Comprehensive revision of phenylketonuria and its history, as well as a useful discussion of the complex genetics of this disorder.

    Article  CAS  PubMed  Google Scholar 

  9. Woo, S. L. C., Lidsky, A. S., Guttler, F., Chandra, D. & Robson, K. J. H. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306, 151–155 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Blau, N., Thony, B., Heizmann, C. W. & Dhondt, J.-L. Tetrahydrobiopterin deficiency: from phenotype to genotype. Pteridines 4, 1–10 (1993).

    Article  CAS  Google Scholar 

  11. Enns, G. M. et al. Molecular correlations in phenylketonuria: mutation patterns and corresponding biochemical and clinical phenotypes in a heterogeneous California population. Pedriatr. Res. 46, 594–602 (1999).

    Article  CAS  Google Scholar 

  12. Tsui, L. C. et al. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 230, 1054–1057 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Acton, J. D. & Wilmott, R. W. Phenotype of CF and the effects of possible modifier genes. Pediatr. Respir. Rev. 2, 332–339 (2001).

    CAS  Google Scholar 

  15. Drumm, M. L. Modifier genes and variation in cystic fibrosis. Resp. Res. 2, 125–128 (2001).

    Article  CAS  Google Scholar 

  16. Mickle, J. E. & Cutting, G. R. Genotype–phenotype relationships in cystic fibrosis. Med. Clin. N. Am. 84, 597–607 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Nadeau, J. H. Modifier genes in mice and humans. Nature Rev. Genet. 2, 165–174 (2001).An elegant and comprehensive discussion of modifier genes and the lessons that can be learned from studying mouse models of human disease.

    Article  CAS  PubMed  Google Scholar 

  18. Zielenski, J. Genotype and phenotype in cystic fibrosis. Respiration 67, 117–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Zielenski, J. et al. Detection of a cystic fibrosis modifier locus for meconium ileus on human chromosome 19q13. Nature Genet. 22, 128–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Rozmahel, R. et al. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nature Genet. 12, 280–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Arkwright, P. D. et al. TGF-β(1) genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax 55, 459–462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hull, J. & Thomson, A. H. Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax 53, 1018–1021 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aron, Y. et al. HLA class II polymorphism in cystic fibrosis. A possible modifier of pulmonary phenotype. Am. J. Respir. Crit. Care Med. 159, 1464–1468 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Garred, P. et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J. Clin. Invest. 104, 431–437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grasemann, H. et al. Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene. Am. J. Respir. Crit. Care Med. 162, 2172–2176 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Parmley, R. R. & Gendler, S. J. Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J. Clin. Invest. 102, 1798–1806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, X. et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 284, 1814–1819 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Groman, J. D., Meyer, M. E., Wilmott, R. W., Zeitlin, P. L. & Cutting, G. R. Variant cystic fibrosis phenotypes in the absence of CFTR mutations. N. Engl. J. Med. 347, 401–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Polanyi, M. Life's irreducible structure. Live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them. Science 160, 53–91 (1968).

    Article  Google Scholar 

  30. Strohman, R. Maneuvering in the complex path from genotype to phenotype. Science 296, 701–703 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Sawa, A. & Snyder, S. H. Schizophrenia: diverse approaches to a complex disease. Science 296, 692–695 (2002). An in-depth review of approaches to studying the pathogenesis of schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  32. Hand, C. K. & Rouleau, G. A. Familial amyotrophic lateral scloerosis. Muscle Nerve 25, 135–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Giess, R. et al. Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am. J. Hum. Genet. 70, 1277–1286 (2002).Description of how, in an ALS patient, CNTF modulates the severity of a SOD1 mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi, R. et al. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nature Genet. 7, 79–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Su, L. K. et al. A germ line mutation of the murine homolog of the APC gene causes multiple intestinal neoplasia. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Moser, A. R., Dove, W. F., Roth, K. A. & Gordon, J. I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol. 116, 1517–1526 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Dietrich, W. F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Coleman, D. L. & Eicher, E. M. Fat (fat) and Tubby (tub): two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered. 81, 424–427 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Noben-Trauth, K., Naggert, J. K., North, M. A. & Nishina, P. M. A candidate gene for the mouse mutation tubby. Nature 380, 534–538 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Kleyn, P. W. et al. Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 85, 281–290 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Ikeda, A. et al. Genetic modification of hearing in tubby mice: evidence for the existence of a major gene (Moth1) which protects tubby mice from hearing loss. Hum. Mol. Genet. 8, 1761–1767 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda, A. et al. Microtubule-associated protein 1A is a modifier of tubby hearing (moth1). Nature Genet. 30, 401–405 (2002). Cloning of the genetic modifier of tubby and the demonstration, through the use of transgenic animals, that sequence polymorphisms in Map1a are responsible for protection against the hearing defect of tubby mutant mice.

    Article  CAS  PubMed  Google Scholar 

  44. Kajiwara, K., Berson, E. L. & Dryja, T. P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608 (1994). Shows that heterozygous mutations in two distinct genes are necessary and sufficient to cause RP in some patients. Probably the first example of digenic mutations in humans.

    Article  CAS  PubMed  Google Scholar 

  45. Rivolta, C., Sharon, D., DeAngelis, M. M. & Dryja, T. P. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum. Mol. Genet. 11, 1219–1227 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Katsanis, N. et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet–Biedl syndrome. Nature Genet. 26, 67–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Slavotinek, A. M. et al. Mutations in MKKS cause Bardet–Biedl syndrome. Nature Genet. 26, 15–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Beales, P. L. et al. Genetic and mutational analyses of a large multiethnic Bardet–Biedl cohort reveal a minor involvement of BBS6 and delineate the critical intervals of other loci. Am. J. Hum. Genet. 68, 606–616 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishimura, D. Y. et al. Positional cloning of a novel gene on chromosome 16q causing Bardet–Biedl syndrome (BBS2). Hum. Mol. Genet. 10, 865–874 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Katsanis, N. et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001). First example of triallelic inheritance in humans, in a disease considered historically to be an autosomal-recessive trait.

    Article  CAS  PubMed  Google Scholar 

  51. Feingold, E. Regression-based quantitative-trait-Locus mapping in the 21st century. Am. J. Hum. Genet. 71, 217–222 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moore, J. H. & Williams, S. M. New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. McCallion, A. S. & Chakravarti, A. in Inborn Errors of Development (eds Epstein, C., Erickson, R. & Wynshaw-Boris, A. (Oxford Univ. Press, San Francisco, in the press).

  54. Puffenberger, E. G. et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell 79, 1257–1266 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Parisi, M. A. & Kapur, R. P. Genetics of Hirschsprung disease. Curr. Opin. Pediatr. 12, 610–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Amiel, J. & Lyonett, S. Hirschsprung disease, associated syndromes, and genetics: a review. J. Med. Genet. 38, 729–739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Angrist, M. et al. A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10. Nature Genet. 3, 351–356 (1993).

    Article  Google Scholar 

  58. Lyonnet, S. et al. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nature Genet. 4, 346–350 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Bolk-Gabriel, S. B. et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nature Genet. 31, 89–93 (2002).

    Article  CAS  Google Scholar 

  60. Bolk, S. et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc. Natl Acad. Sci. USA 97, 268–273 (2000). References 59 and 60 establish statistical methods to analyse the documented oligogenicity of Hirschsprung disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Floeth, M. & Bruckner-Tuderman, L. Digenic junctional epidermolysis bullosa: mutations in COL17A1 and LAMB3 genes. Am. J. Hum. Genet. 65, 1530–1537 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein nephrin is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Patrakka, J. et al. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int. 58, 972–980 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genet. 24, 349–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Huber, T. B., Kottgen, M., Schilling, B., Walz, G. & Benzing, T. Interaction with podocin facilitates nephrin signaling. J. Biol. Chem. 276, 1543–1546 (2001).

    Google Scholar 

  66. Koziell, A. et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum. Mol. Genet. 11, 379–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Mykytyn, K. et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nature Genet. 28, 188–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Katsanis, N. et al. BBS4 is a minor contributor to Bardet–Biedl syndrome and may also participate in triallelic inheritance. Am. J. Hum. Genet. 71, 22–29 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stone, E. M. et al. Identification of a gene that causes primary open angle glaucoma. Science 275, 668–670 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Stoilov, I., Akarsu, A. N. & Sarfarazi, M. Identification of three different truncating mutations in cytochrome P450B1 (CYP1B1) as the principal cause of primary congenital glaucoma (buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. 6, 641–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Fingert, J. H. et al. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum. Mol. Genet. 8, 899–905 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Bejjani, B. A. et al. Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum. Mol. Genet. 12, 367–374 (2000).

    Article  Google Scholar 

  73. Bejjani, B. A. et al. Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am. J. Hum. Genet. 62, 325–333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vincent, A. L. et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am. J. Hum. Genet. 70, 448–460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hanna, I. H., Dawling, S., Roodi, N., Guengerich, F. P. & Parl, F. F. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in hydrogen hydroxylation activity. Cancer Res. 60, 3440–3444 (2000).

    CAS  PubMed  Google Scholar 

  76. Shimada, T., Watanabe, J., Inoue, K., Guengerich, F. P. & Gillam, E. M. Specificity of 17b-oestradiol and benzo[a]pyrene oxidation by polymorphic human cytochrome P450B1 variants substituted at residues 48, 119 and 432. Xenobiotica 31, 163–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Shimada, T. et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20, 1607–1613 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Li, D. N., Seidel, A., Pritchard, M. P., Wolf, C. R. & Friedberg, T. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics 10, 343–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Goldberg, A. F. X. & Molday, R. S. Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 35, 6144–6149 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Clark, G. et al. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nature Genet. 25, 67–73 (2000).

    Article  CAS  Google Scholar 

  81. Travis, G. H., Brennan, M. B., Danielson, P. E., Kozak, C. A. & Sutcliffe, J. G. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338, 70–73 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Loewen, C. J., Moritz, O. L. & Molday, R. S. Molecular characterization of the peripherin-2 and rom-1 mutants responsible for digenic retinitis pigmentosa. J. Biol. Chem. 276, 22388–22396 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Goldberg, A. F. & Molday, R. S. Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc. Natl Acad. Sci. USA 93, 13726–13730 (1996). References 82 and 83 illustrate the molecular basis of digenic inheritance involving ROM1 and RDS in human RP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schwartz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    Article  Google Scholar 

  85. Angrist, M., Bolk, S., Halushka, M., Lapchak, P. & Chakravarti, A. Germline mutations in glial cell-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nature Genet. 14, 341–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Durbec, P. et al. GDNF signaling through the Ret receptor tyrosine kinase. Nature 381, 789–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Treanor, J. J. et al. Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. McCright, B., Lozier, J. & Gridley, T. A mouse model for Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075–1082 (2002). Describes the molecular basis of phenotypic modification of the Jag1 mutation.

    CAS  PubMed  Google Scholar 

  91. Yook, K. J., Proulx, S. R. & Jorgensen, E. M. Rules of nonallelic complementation at the synapse in Caenorhabditis elegans. Genetics 158, 209–220 (2001). A comprehensive analysis of non-allelic non-complementation and establishment of its parameters of action in the worm synapse.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fuller, M. T. et al. Interacting genes identify interacting proteins involved in microtubule function in Drosophila. Cell Motil. Cytoskeleton 14, 128–135 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Stearns, T. & Botstein, D. Unlinked noncomplementation: isolation of new conditional-lethal mutations in each of the tubulin genes of Saccharomyces cerevisiae. Genetics 119, 249–260 (1988). A classic paper on the use of non-allelic non-complementation to study specific signalling pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Westphal, I. V. et al. A frequent mild mutation in ALG6 may exacerbate the clinical severity of patients with congenital disorder of glycosylation Ia (CDG-Ia) caused by phosphomannomutase deficiency. Hum. Mol. Genet. 11, 599–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 41–47 (2002).

    Article  Google Scholar 

  96. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Scriver, C. R. Why mutation analysis does not always predict clinical consequences: explanations in the era of genomics. J. Pediatr. 140, 502–506 (2002).

    Article  PubMed  Google Scholar 

  98. Allikmets, R. et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277, 1805–1807 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Allikmets, R. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet. 15, 236–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Sun, H., Smallwood, P. M. & Nathans, J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nature Genet. 26, 242–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Shroyer, N. F., Lewis, R. A., Yatsenko, A. N., Wensel, T. G. & Lupski, J. R. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Hum. Mol. Genet. 10, 2671–2678 (2001). References 100 and 101 show the mutagenic potential of alleles for which pathogenicity had been disputed according to genetic criteria.

    Article  CAS  PubMed  Google Scholar 

  102. del Castillo, I. et al. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N. Engl. J. Med. 346, 243–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Riazuddin, S. et al. Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Nature Genet. 26, 431–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Adato, A. et al. Possible interaction between USH1B and USH3 gene products as implied by apparent digenic deafness inheritance. Am. J. Hum. Genet. 65, 261–265 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Balciuniene, J. et al. Evidence for digenic inheritance of nonsyndromic hereditary hearing loss in a Swedish family. Am. J. Hum. Genet. 63, 786–793 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morell, R. et al. Apparent digenic inheritance of Waardenburg syndrome type 2 (WS2) and autosomal recessive ocular albinism (AROA). Hum. Mol. Genet. 6, 659–664 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Richard, I. et al. Mutations in the proteolytic enzyme Calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Bolliger-Stucki, B., Lord, S. T. & Furlan, M. Fibrinogen Milano XII: a dysfunctional variant containing 2 amino acid substitutions, α-R16C and γ-G165R. Blood 98, 351–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Goodyer, P. R., Clow, C., Reade, T. & Girardin, C. Prospective analysis and classification of patients with cystinuria identified in a newborn screening program. J. Pediatr. 122, 568–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Kerst, B. et al. Heterozygous myogenic factor 6 mutation associated with myopathy and severe course of Becker muscular dystrophy. Neuromuscul. Disord. 10, 572–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Redston, M. et al. The APCI1307K allele and breast cancer risk. Nature Genet. 20, 13–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Scharf, J. M. et al. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nature Genet. 20, 83–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Phelan, C. M. et al. Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nature Genet. 12, 309–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Knoblauch, H. et al. A cholesterol-lowering gene maps to chromosome 13q. Am. J. Hum. Genet. 66, 157–166 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cazeneuve, C. et al. Identification of MEFV-independent modifying genetic factors for familial Mediterranean fever. Am. J. Hum. Genet. 67, 1136–1143 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bykhovskaya, Y. et al. Candidate locus for a nuclear modifier gene for maternally inherited deafness. Am. J. Hum. Genet. 66, 1905–1910 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Box, N. F. et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am. J. Hum. Genet. 69, 765–773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sertie, A. L., Sousa, A. V., Steman, S., Pavanello, R. C. & Passos-Bueno, M. R. Linkage analysis in a large Brazilian family with van der Woude syndrome suggests the existence of a susceptibility locus for cleft palate at 17p11. −2-11.−1. Am. J. Hum. Genet. 65, 433–440 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gill, J. C., Endres-Brooks, J., Bauer, P. J., Marks, W. J. J. & Montgomery, R. R. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 69, 1691–1695 (1987).

    CAS  PubMed  Google Scholar 

  120. Mohlke, K. L. et al. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 96, 111–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Wyss-Coray, T. et al. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nature Med. 7, 612–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Takaku, K. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by an additional mutation in the cytosolic phospholipase A2 gene. J. Biol. Chem. 275, 34013–34016 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Vockley, J., Rinaldo, P., Bennett, M. J., Matern, D. & Vladutiu, G. D. Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways. Mol. Genet. Metab. 71, 10–18 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those researchers whose work we were unable to represent due to space constraints. We thank J. Groman and G. Cutting for sharing their unpublished data with us, and G. Cutting, S. Huston and J. Lupski for constructive discussions and critique of this manuscript. This work was supported by the National Eye Institute, the National Institutes of Health and by a grant from March of Dimes to N.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Katsanis.

Related links

Related links

DATABASES

LocusLink

ALG6

APC

Apc

BBS2

BBS6

CFTR

COL17A1

CNTF

CYP1B1

EDNRB

FAP

GDNF

HLA class II

JAG1

LAMB3

Map1a

MBL

Mom1

moth1

MTAP1

Muc1

NOS1

NOTCH2

NPHS1

NPHS2

PAH

PMM2

RDS

ROM1

SOD1

TGFB1

tub

OMIM

Bardet–Biedl syndrome

cystic fibrosis

familial amyotrophic lateral sclerosis

FAP

Finnish congenital nephrotic syndrome

generalized atrophic benign epidermolysis bullosa

Hirschsprung disease

hyperphenylalaninaemia

junctional epidermolysis bullosa

juvenile open-angle glaucoma

PKU

RP

schizophrenia

segmental glomerulosclerosis

WormBase

UNC-13

FURTHER INFORMATION

Nicholas Katsanis' lab

Glossary

PHENYLKETONURIA

An inborn error of metabolism that is caused by lack of the enzyme PAH that converts phenylalanine to tyrosine. If left untreated, it causes abnormally high phenylalanine levels and severe, progressive mental retardation, but can be prevented by neonatal screening and a low phenylalanine diet from an early age.

TETRAHYDROBIOPTERIN

Phenylalanine hydroxylase (PAH) is an oxygenase that couples an electron from a tetrahydrobiopterin cofactor (BH4) and an oxygen atom to hydroxylate phenylalanine to form tyrosine. Consequently, any defects in BH4 biosynthesis impair PAH function.

FAMILIAL ADENOMATOUS POLYPOSIS

(FAP). The development of numerous adomatous polyps in the colon that might progress to carcinomas.

QUANTITATIVE TRAIT LOCUS

(QTL). A genetic locus or chromosomal region that contributes to variability in complex quantitative traits (such as height or body weight), as identified by statistical analysis. Quantitative traits are typically affected by several genes and by the environment.

RETINITIS PIGMENTOSA

(RP). A group of both clinically and genetically heterogeneous hereditary retinal degeneration disorders that are caused by the death of both rod and cone photoreceptors, leading to a complete loss of vision.

BARDET–BIEDL SYNDROME

(BBS). A rare and genetically heterogeneous disorder that is characterized primarily by obesity, retinal dystrophy, polydactyly, hypogenitalism, learning difficulties and renal malformations.

HAPLOTYPE ANALYSIS

The study of the pattern of descent of a combination of alleles at different sites on a single chromosome (known as a haplotype). It is used for the identification of recombination events between markers and traits during linkage studies, thereby establishing the boundaries of the location of a phenotype-associated locus.

CONSANGUINEOUS

Descended from a recent common ancestor.

ENTERIC GANGLIA

Parasympathetic mass of nerve tissue (ganglia) in the colon.

PENETRANCE

The proportion of affected individuals among the carriers of a particular genotype. If all individuals who have a disease genotype show the disease phenotype, then the disease is said to be “completely penetrant”.

HERITABILITY

The proportion of the variation in a given characteristic or state that can be attributed to genetic factors.

PARAMETRIC LINKAGE

Parametric analyses are statistical tests for linkage that use assumptions such as mode of transmission, allele frequencies and penetrance.

NON-PARAMETRIC LINKAGE

Non-parametric approaches are statistical procedures that are not based on models, or assumptions pertaining to the distribution of the quantitative trait.

LOD SCORE

(Base 10 'logarithm of the odds' or 'log-odds'). A method of hypothesis testing. The logarithm of the ratio between likelihoods under the null and alternative hypotheses.

NEPHROTIC SYNDROME

Malfunction of the renal glomerular filtration barrier (a structure in the glomerulus that is responsible for protein filtration) that lead to the loss of plasma proteins.

GLAUCOMA

The abnormally elevated pressure in the liquid that fills the anterior part of the eye (the aqueous humour).

LINKAGE DISEQUILIBRIUM

The condition in which the frequency of a particular haplotype for two loci is significantly greater than that expected from the product of the observed allelic frequencies at each locus.

GENETIC DRIFT

Random fluctuations in the allele and, less commonly, the phenotype frequencies, as genes are transmitted from one generation to the next.

ALAGILLE SYNDROME

A dominantly inherited disorder that is characterized primarily by a scarcity of bile ducts in the liver. Other features include heart, eye, kidney and skeletal abnormalities, as well as defects in the central nervous system.

HAPLOINSUFFICIENCY

A gene dosage effect that occurs when a diploid requires both functional copies of a gene for a wild-type phenotype. An organism that is heterozygous for a haploinsufficient locus does not have a wild-type phenotype.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badano, J., Katsanis, N. Beyond Mendel: an evolving view of human genetic disease transmission. Nat Rev Genet 3, 779–789 (2002). https://doi.org/10.1038/nrg910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing