Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of sex

Postcopulatory sexual selection

Key Points

  • Postcopulatory sexual selection (PCSS) arises from widespread sexual promiscuity and operates through competition of the ejaculates of different males over fertilization (sperm competition), choice of sperm by the female (cryptic female choice) and the interaction between them.

  • In some cases, the outcome of postcopulatory mechanisms can be determined by the combination of the male and female (or sperm and ova) genotypes, resulting in non-directional PCSS.

  • In others, both sperm competition and cryptic female choice generate directional selection, accounting for the coevolution of extreme reproductive traits in both sexes.

  • Inter-sexual coevolution driven by PCSS is characterized by extremely high rates of molecular substitution, mediating the rapid evolution of reproductive morphology, behaviour and physiology, which can lead to population divergence, reproductive isolation and speciation.

  • Because the reproductive interests of males and females typically diverge, PCSS could be a potent broker of rapid antagonistic inter-sexual coevolution, resulting, at different coevolutionary stages, in the spread of sexually antagonistic alleles, and the evolution of their sex limitation and/or of the sex-biased control of their transmission.

  • Although the study of PCSS focused initially on evolutionary issues and behavioural/physiological mechanisms, genetics will become increasingly important, both in determining the mechanisms of PCSS and in testing evolutionary ideas.

Abstract

The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sperm numbers influence the outcome of sperm competition in Soay sheep.
Figure 2: Mechanism of sperm competition in birds and mammals.
Figure 3: Sperm competition and cryptic female choice in the yellow dungfly Scathophaga stercorcaria.
Figure 4: Gallus gallus domesticus.
Figure 5: Cryptic female choice in the comb jelly Beroë ovata.

Similar content being viewed by others

References

  1. Darwin, C. The Descent of Man and Selection in Relation to Sex (John Murray, London, 1871).

    Google Scholar 

  2. Smith, R. L. Sperm Competition and the Evolution of Animal Mating Systems (Academic, London, 1984).

    Google Scholar 

  3. Birkhead, T. R. & Møller, A. P. Sperm Competition and Sexual Selection (Academic, London, 1998).A comprehensive review of postcopulatory sexual selection across the animal kingdom, together with a chapter on pollen competition and several conceptual chapters.

    Google Scholar 

  4. Tregenza, T. & Wedell, N. Genetic compatibility, mate choice and patterns of parentage: invited review. Mol. Ecol. 9, 1013–1027 (2000).

    CAS  PubMed  Google Scholar 

  5. Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).

    Google Scholar 

  6. Parker, G. A. in Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R. L.) 1–60 (Academic, London, 1984).

    Google Scholar 

  7. Parker, G. A. in Sperm Competition and Sexual Selection (eds T. R. Birkhead & A. P. Møller) 3–54 (Academic, London, 1998).

    Google Scholar 

  8. Eberhard, W. G. Female Control: Sexual Selection by Cryptic Female Choice (Princeton Univ. Press, Princeton, New Jersey, 1996).

    Google Scholar 

  9. Coltman, D. W., Pilkington, J. G., Kruuk, L. E., Wilson, K. & Pemberton, J. M. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55, 2116–2125 (2001).

    CAS  PubMed  Google Scholar 

  10. Hurst, L. D. Embryonic growth and the evolution of the mammalian Y chromosome. l. The Y as an attractor for selfish growth factors. Heredity 73, 223–232 (1994).

    PubMed  Google Scholar 

  11. Wolf, J. B. Gene interactions from maternal effects. Evolution 54, 1882–1898 (2000).

    CAS  PubMed  Google Scholar 

  12. Pizzari, T. Sexual selection: separating genes from imprinting. Trends Ecol. Evol. 14, 399 (1999).

    CAS  PubMed  Google Scholar 

  13. Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).

    CAS  PubMed  Google Scholar 

  14. Halliday, T. R. & Arnold, S. J. Multiple mating by females: a perspective from quantitative genetics. Anim. Behav. 35, 939–941 (1987).

    Google Scholar 

  15. Ketterson, E. D. et al. The relative impact of extra-pair fertilizations on variation in male and female reproductive success in dark-eyed juncos (Junco hyemalis). Ornithol. Monogr. 49, 81–101 (1997).

    Google Scholar 

  16. Birkhead, T. R. Promiscuity: An Evolutionary History of Sperm Competition and Sexual Conflict (Faber & Faber, London, 2000).

    Google Scholar 

  17. Trivers, R. L. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Aldine–Atherton, Chicago, Illinois, 1972).

    Google Scholar 

  18. Clutton-Brock, T. H. & Vincent, A. C. J. Sexual selection and the potential reproductive rates of males and females. Nature 351, 58–60 (1991).

    CAS  PubMed  Google Scholar 

  19. Andersson, M. Sexual Selection (Princeton Univ. Press, Princeton, New Jersey, 1994).

    Google Scholar 

  20. Parker, G. A., Baker, R. R. & Smith, V. G. F. The origin and evolution of gamete dimorphism and the male–male phenomenon. J. Theor. Biol. 36, 529–553 (1972).

    CAS  PubMed  Google Scholar 

  21. Delph, L. & Havens, K. in Sperm Competition and Sexual Selection (eds Birkhead, T. R. & Møller, A. P.) 150–173 (Academic, London, 1998).

    Google Scholar 

  22. Chapman, T. Seminal fluid-mediated fitness traits in Drosophila. Heredity 87, 1–11 (2001).An overview of the effect of male seminal proteins on the female reproductive process. Seminal protein genes are expressed only in males but it remains to be discovered how and why they affect female reproduction.

    Google Scholar 

  23. Swanson, W. J., Clark, A. G., Waldrip-Dail, H. M., Wolfner, M. F. & Aquadro, C. F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl Acad. Sci. USA 98, 7375–7379 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F. & Partridge, L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373, 241–244 (1995).

    CAS  PubMed  Google Scholar 

  25. Pizzari, T. & Birkhead, T. R. The sexually selected sperm hypothesis: sex-biased inheritance and sexual anatagonism. Biol. Rev. (in the press).A detailed review of traits that influence male reproductive success at a post-copulatory stage and of the mechanisms of their inheritance. Reproductive traits are likely to have sex-biased inheritance and sexually antagonistic effects.

  26. Swanson, W. J. & Vacquier, V. D. Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science 281, 710–712 (1998).Compares cDNA sequences of a sperm protein, lysin, which mediates fertilization, with that of its egg receptor, VERL, in several species of marine molluscs (such as abalone and Haliotis sp.). Proteins evolve in unison and at a high rate, providing molecular evidence that postcopulatory sexual selection drives rapid intersexual specialization, leading to reproductive isolation and possibly speciation.

    CAS  PubMed  Google Scholar 

  27. Palumbi, S. All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins. Proc. Natl Acad. Sci. USA 96, 12632–12637 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jivoff, P. & Hines, A. H. Female behaviour, sexual competition and mate guarding in the blue crab, Callinectes sapidus. Anim. Behav. 55, 589–603 (1998).

    CAS  PubMed  Google Scholar 

  29. Hunter, F. M., Harcourt, R., Wright, M. & Davis, L. Strategic allocation of ejaculates by male Adélie penguins. Proc. R. Soc. Lond. B 267, 1541–1545 (2000).

    CAS  Google Scholar 

  30. Nicholls, E. H., Burke, T. & Birkhead, T. R. Ejaculate allocation by male sand martins Riparia riparia. Proc. R. Soc. Lond. B 268, 1265–1270 (2001).

    CAS  Google Scholar 

  31. Stockley, P., Gage, M. J. G., Parker, G. A. & Møller, A. P. Sperm competition in fish: the evolution of testis size and ejaculate characteristics. Am. Nat. 149, 933–954 (1997).

    CAS  PubMed  Google Scholar 

  32. Warner, R. R., Shapiro, D. Y., Marcanato, A. & Petersen, C. W. Sexual conflict: males with highest mating success convey the lowest fertilization benefits to females. Proc. R. Soc. Lond. B 262, 135–139 (1995).

    CAS  Google Scholar 

  33. Pitnick, S., Spicer, G. S. & Markow, T. A. How long is a giant sperm? Nature 375, 109 (1995).

    CAS  PubMed  Google Scholar 

  34. LaMunyon, C. W. & Ward, S. Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc. R. Soc. Lond. B 266, 263–267 (1999).

    CAS  Google Scholar 

  35. Briskie, J. V., Montgomerie, E. & Birkhead, T. R. The evolution of sperm size in birds. Evolution 51, 937–945 (1997).

    PubMed  Google Scholar 

  36. Hunter, F. M. & Birkhead, T. R. Sperm viability and sperm competition in insects. Curr. Biol. 12, 121–123 (2002).

    CAS  PubMed  Google Scholar 

  37. Birkhead, T. R., Martinez, J. G., Burke, T. & Froman, D. P. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. Lond. B 266, 1759–1764 (1999).

    CAS  Google Scholar 

  38. Snook, R. R. & Karr, T. L. Only long sperm are fertilization-competent in six sperm-heteromorphic Drosophila species. Curr. Biol. 8, 291–298 (1998).

    CAS  PubMed  Google Scholar 

  39. Cook, P. A. & Wedell, N. Non-fertile sperm delay female remating. Nature 397, 486 (1999).Shows that non-fertilizing (apyrene) sperm in a butterfly serve as a 'cheap filler' of the female's sperm store and hence delay remating, decreasing the risk of sperm competition for males.

    CAS  Google Scholar 

  40. Baker, R. R. & Bellis, M. Human Sperm Competition (Chapman & Hall, London, 1995).

    Google Scholar 

  41. Moore, H. D. M., Martin, M. & Birkhead, T. R. No evidence for killer sperm or other selective interactions between human spermatozoa in ejaculates of different males in vitro. Proc. R. Soc. Lond. B 266, 2343–2350 (1999).

    CAS  Google Scholar 

  42. Waage, J. K. Dual function of the damselfly penis: sperm removal and transfer. Science 203, 916–918 (1979).

    CAS  PubMed  Google Scholar 

  43. Smith, R. L. Repeated copulation and sperm precedence: paternity assurance for a male brooding water bug. Science 205, 1029–1031 (1979).

    CAS  PubMed  Google Scholar 

  44. Hosken, D., Meyer, E. & Ward, P. Internal female reproductive anatomy and genitalic interactions during copula in the yellow dungfly Scathophaga stercoraria (Diptera: Scathophagidae). Can. J. Zool. 77, 1975–1983 (1999).

    Google Scholar 

  45. Chen, P. S. et al. A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell 54, 291–298 (1988).

    CAS  PubMed  Google Scholar 

  46. Prout, T. & Clark, A. G. Seminal fluid causes temporarily reduced egg hatch in previously mated females. Proc. R. Soc. Lond. B 267, 201–203 (2000).

    CAS  Google Scholar 

  47. Chapman, T., Neubaum, D. M., Wolfner, M. F. & Partridge, L. The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proc. R. Soc. Lond. B 267, 1097–1105 (2000).

    CAS  Google Scholar 

  48. Singson, A., Hill, K. L. & L'Hernault, S. W. Sperm competition in the absence of fertilization in Caenorhabditis elegans. Genetics 152, 201–208 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. L' Hernault, S. W., Shakes, D. C. & Ward, S. Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 120, 435–442 (1988).

    CAS  Google Scholar 

  50. Shakes, D. C. & Ward, S. Mutations that disrupt the morphogenesis and localization of a sperm-specific organelle in Caenorhabditis elegans. Dev. Biol. 134, 307–316 (1989).

    CAS  PubMed  Google Scholar 

  51. Nance, J., Minniti, A. N., Sadler, C. & Ward, S. spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics 152, 209–220 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Briskie, J. V. & Montgomerie, R. Sperm size and sperm competition in birds. Proc. R. Soc. Lond. B 247, 89–95 (1992).

    CAS  Google Scholar 

  53. Birkhead, T. R. Cryptic female choice: criteria for establishing female sperm choice. Evolution 52, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  54. Birkhead, T. R. Defining and demonstrating postcopulatory female choice — again. Evolution 54, 1057–1060 (2000).

    CAS  PubMed  Google Scholar 

  55. Pitnick, S. & Brown, W. D. Criteria for demonstrating female sperm choice. Evolution 54, 1052–1056 (2000).

    CAS  PubMed  Google Scholar 

  56. Thornhill, R. Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am. Nat. 122, 765–788 (1983).

    Google Scholar 

  57. Childress, D. & Hartl, D. L. Sperm preference in Drosophila melanogaster. Genetics 71, 417–427 (1972).

    CAS  PubMed  Google Scholar 

  58. Hellriegel, B. & Ward, P. I. Complex female reproductive tract morphology: its possible use in postcopulatory female choice. J. Theor. Biol. 190, 179–186 (1998).

    Google Scholar 

  59. Pitnick, S., Markow, T. & Spicer, G. S. Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution 53, 1804–1822 (1999).

    PubMed  Google Scholar 

  60. Presgraves, D. C., Baker, R. H. & Wilkinson, G. S. Coevolution of sperm and female reproductive tract morphology in stalk-eyed flies. Proc. R. Soc. Lond. B 266, 1041–1047 (1999).

    Google Scholar 

  61. Edvardsson, M. & Arnqvist, G. Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proc. R. Soc. Lond. B 267, 559–563 (2000).

    CAS  Google Scholar 

  62. Pizzari, T. & Birkhead, T. R. Female fowl eject sperm of subdominant males. Nature 405, 787–789 (2000).

    CAS  PubMed  Google Scholar 

  63. Bishop, J. D. D., Jones, C. S. & Noble, L. R. Female control of paternity in the internally fertilizing compound ascidian Diplosoma listerianum. II. Investigation of male mating success using RAPD markers. Proc. R. Soc. Lond. B 263, 401–407 (1996).

    Google Scholar 

  64. Carré, D. & Sardet, C. Fertilization and early development in Beroë ovata. Dev. Biol. 105, 188–195 (1984).

    PubMed  Google Scholar 

  65. Stockely, P. No evidence of sperm selection by female common shrews. Proc. R. Soc. Lond. B 264, 1497–1500 (1997).

    Google Scholar 

  66. Cunningham, E. J. A. & Cheng, K. M. Biases in sperm utilization in the mallard: no evidence for selection by females based on sperm genotype. Proc. R. Soc. Lond. B 266, 905–910 (1999).

    Google Scholar 

  67. Wilson, N., Tubman, S. C., Eady, P. E. & Robertson, G. W. Female genotype affects male success in sperm competition. Proc. R. Soc. Lond. B 264, 1491–1495 (1997).

    Google Scholar 

  68. Prout, T. & Clark, A. G. Polymorphism in genes that influence sperm displacement. Genetics 144, 401–408 (1996).Addresses the issue of what maintains genetic variation in sperm displacement despite directional postcopulatory sexual selection. A single locus model shows that genetic polymorphism can be evolutionarily stable when alleles that control sperm displacement have pleiotropic effects on fecundity and mating ability.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin-Villa, J. M., Longas, J. & Arnaiz-Villena, A. Cyclic expression of HLA class I and II molecules on the surface of purified human spermatozoa and their control by serum inhibin B levels. Biol. Reprod. 61, 1381–1386 (1999).

    CAS  PubMed  Google Scholar 

  70. Catalano, R. D., Hillhouse, E. W. & Vlad, M. Developmental expression and characterization of FS39, a testis complementary DNA encoding an intermediate filament-related protein of the sperm fibrous sheath. Biol. Reprod. 65, 277–287 (2001).

    CAS  PubMed  Google Scholar 

  71. Dahle, M. K., Reinton, N., Orstavik, S., Tasken, K. A. & Tasken, K. Novel alternatively spliced mRNA (1c) of the protein kinase A RIα subunit is implicated in haploid germ cell specific expression. Mol. Reprod. Dev. 59, 11–16 (2001).

    CAS  PubMed  Google Scholar 

  72. Uchida, K. et al. Cloning and characterization of a complementary deoxyribonucleic acid encoding haploid-specific alanine-rich acidic protein located on chromosome-X. Biol. Reprod. 63, 993–999 (2000).

    CAS  PubMed  Google Scholar 

  73. Simmons, L. W., Stockley, P., Jackson, R. L. & Parker, G. A. Sperm competition or sperm selection: no evidence for female influence over paternity in yellow dung flies Scatophaga stercoraria. Behav. Ecol. Sociobiol. 38, 199–206 (1996).

    Google Scholar 

  74. Kempenaers, B. et al. Extra-pair paternity results from female preference for high quality males in the blue tit. Nature 357, 494–496 (1992).

    Google Scholar 

  75. Matthews, I. M., Evans, J. P. & Magurran, A. E. Male display rate reveals ejaculate characteristics in the Trinidadian guppy Poecilla reticulata. Proc. R. Soc. Lond. B 264, 695–700 (1997).

    Google Scholar 

  76. Lande, R. & Arnold, S. J. The measurement of of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Google Scholar 

  77. Cheverud, J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 (1996).

    Google Scholar 

  78. Lank, D. B., Smith, C. M., Hannote, O., Burke, T. & Cooke, F. Genetic polymorphism for alternative mating behaviour in lekking male ruff Philomachus pugnax. Nature 378, 59–62 (1995).

    CAS  Google Scholar 

  79. Shuster, S. M. & Sassaman, C. A. Genetic interaction between male mating strategy and sex ratio in a marine isopod. Nature 388, 373–377 (1997).

    CAS  Google Scholar 

  80. Shuster, S. M. & Wade, M. J. Equal mating success among male reproductive strategies in a marine isopod. Nature 350, 608–610 (1991).

    Google Scholar 

  81. Parker, G. A. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) 123–166 (Academic, New York, 1979).

    Google Scholar 

  82. Rice, W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234 (1996).

    CAS  PubMed  Google Scholar 

  83. Holland, B. & Rice, W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes reproductive load. Proc. Natl Acad. Sci. USA 96, 5083–5088 (1999).A spectacular demonstration that sexual selection drives the evolution of male traits that are detrimental to females. This could be mediated by seminal fluid products, which determine male postcopulatory performance but have toxic effects on females.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hosken, D. J., Garner, T. W. J. & Ward, P. I. Sexual conflict selects for male and female reproductive characters. Curr. Biol. 11, 1–20 (2001).

    Google Scholar 

  85. Begun, D. J., Whitley, P., Todd, B., Waldrip-Dail, H. & Clark, A. G. Molecular population genetics of male accessory proteins in Drosophila. Genetics 156, 1879–1888 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frank, S. A. & Hurst, L. D. Mitochondria and male disease. Nature 383, 224 (1996).

    CAS  PubMed  Google Scholar 

  87. Ruiz-Pesini, E. et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet. 67, 543–548 (2000).

    Google Scholar 

  88. Rand, D. M., Clark, A. G. & Kann, L. M. Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 159, 173–187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ward, P. Cryptic female choice in the yellow dungfly Scathophaga stercoraria (L.). Evolution 54, 1680–1686 (2000).

    CAS  PubMed  Google Scholar 

  90. Ottaviano, E. & Mulcahy, D. L. Genetics of angiosperm pollen. Adv. Genet. 26, 1–65 (1989).

    Google Scholar 

  91. Haig, D. & Bergstrom, C. T. Multiple mating, sperm competition and meiotic drive. Genetics 121, 129–138 (1995).

    Google Scholar 

  92. Froman, D. P., Pizzari, T., Feltmann, A. J., Castillo–Juarez, H. & Birkhead, T. R. Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the fowl, Gallus g. domesticus. Proc. R. Soc. Lond. B 269 (in the press).

  93. Snook, R. R. Conflict, kindness and chicanery. Curr. Biol. 11, R337–R341 (2001).

    CAS  PubMed  Google Scholar 

  94. Hughes, K. A. Quantitatuve genetics of sperm precedence in Drosophila melanogaster. Genetics 145, 139–151 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  96. Van der Werf, J. H. J. & der Boer, I. J. M. Estimation of additive genetic variance when base populations are selected. J. Anim. Sci. 68, 3124–3132 (1990).

    CAS  PubMed  Google Scholar 

  97. Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).

    CAS  PubMed  Google Scholar 

  98. David, P., Bjorksten, P., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406, 186–188 (2000).

    CAS  PubMed  Google Scholar 

  99. Takahashi, J. S., Pinto, L. H. & Vitaterna, M. H. Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724–1733 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Andersson, L. Genetic dissection of phenotype diversity in farm animals. Nature Rev. Genet. 2, 130–138 (2001).

    CAS  PubMed  Google Scholar 

  101. Mackay, T. F. C. Quantitative trait loci in Drosophila. Nature Rev. Genet. 2, 11–21 (2001).

    CAS  PubMed  Google Scholar 

  102. Yamamoto, D. & Nakano, Y. Genes for sexual behaviour. Biochem. Biophys. Res. Commun. 246, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  103. Singson, A. Every sperm is sacred: fertilisation in Caenorhabditis elegans. Dev. Biol. 230, 101–109 (2001).

    CAS  PubMed  Google Scholar 

  104. Pfaff, D. Precision in mouse behavior genetics. Proc. Natl Acad. Sci. USA 98, 5957–5960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Karim, F. D. et al. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ridley, M. Mating frequency and fecundity in insects. Biol. Rev. 63, 509–549 (1988).

    Google Scholar 

  107. Simmons, L. W. & Siva-Jothy, M. T. in Sperm Competition and Sexual Selection (ed. Birkhead, T. R. & Møller, A. P.) 341–434 (Academic, London, 1998).

    Google Scholar 

  108. Rice, W. R. Male fitness increases when females are eliminated from gene pool: implications for the Y chromosome. Proc. Natl Acad. Sci. USA 95, 6217–6221 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Parker, G. A. & Partridge, L. Sexual conflcit and speciation. Phil. Trans. R. Soc. Lond. B 353, 261–274 (1998).

    CAS  Google Scholar 

  110. Gavrilets, S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature 403, 886–889 (2000).

    CAS  PubMed  Google Scholar 

  111. Tregenza, T., Butlin, R. K. & Wedell, N. Evolutionary biology — sexual conflict and speciation. Nature 407, 149–150 (2000).

    CAS  PubMed  Google Scholar 

  112. Panhuis, T. M., Butlin, R., Zuk, M. & Tregenza, T. Sexual selection and speciation. Trends Ecol. Evol. 16, 364–371 (2001).

    PubMed  Google Scholar 

  113. Metz, E. C. & Palumbi, S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13, 397–406 (1996).

    CAS  PubMed  Google Scholar 

  114. Arnqvist, G. Comparative evidence for the evolution of genitalia by sexual selection. Nature 393, 784–786 (1998).

    CAS  Google Scholar 

  115. Møller, A. P. & Cuervo, J. J. Speciation and feather ornamentation in birds. Evolution 52, 859–869 (1998).

    PubMed  Google Scholar 

  116. Arnqvist, G. Comparative evidence for the evolution of genitalia by sexual selection. Nature 393, 784–786 (1998).

    CAS  Google Scholar 

  117. Keller, L. & Reeve, H. K. Why do females mate with multiple males? The sexually selected sperm hypothesis. Adv. Study Behav. 24, 291–315 (1995).

    Google Scholar 

  118. Sheldon, B. C. Male phenotype, fertility and the pursuit of extra-pair copulations by female birds. Proc. R. Soc. Lond. B 257, 25–30 (1994).

    Google Scholar 

  119. Roff, D. A. The estimation of genetic correlations from phenotypic correlations: a test of Cherverud's conjecture. Heredity 74, 481–490 (1995).

    Google Scholar 

  120. Møller, A. P. & Alatalo, R. V. Good-genes effects in sexual selection. Proc. R. Soc. Lond. B 266, 85–91 (1999).

    Google Scholar 

  121. Stearns, S. The Evolution of Life Histories (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  122. Vacquier, D. Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science 281, 710–712 (1998).

    PubMed  Google Scholar 

  123. Swanson, W. J., Clark, A. G., Waldrip-Dail, H. M., Wolfner, M. F. & Aquadro, C. F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl Acad. Sci. USA 98, 7375–7379 (2001).A comparative EST analysis of male accessory glands of D. melanogaster and their orthologues in D. simulans , showing that many male reproductive genes undergo faster rates of selection than regions that control non-reproductive traits in the same species.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Swanson, W., Yang, Z., Wolfner, M. F. & Aquadro, C. Positive Darwinian selection drives the evolution of several reproductive proteins in mammals. Proc. Natl Acad. Sci. USA 98, 2509–2514 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet. 3, 137–144 (2002).

    CAS  PubMed  Google Scholar 

  126. Chippindale, A. K. & Rice, W. R. Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 5677–5682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Civetta, A. & Clark, A. G. Correlated effects of sperm competition and postmating female mortality. Proc. Natl Acad. Sci. USA 97, 13162–13165 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Montell, H., Fridolfsson, A. K. & Ellegren, H. Contrasting levels of nucleotide diversity on the avian Z and W chromosome. Mol. Biol. Evol. 18, 2010–2016 (2001).

    CAS  PubMed  Google Scholar 

  130. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    PubMed  Google Scholar 

  131. Carvalho, A. B., Lazzaro, B. P. & Clark, A. G. Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc. Natl Acad. Sci. USA 97, 13239–13244 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Preston, B. T., Stevenson, I. R., Pemberton, J. M. & Wilson, K. Dominant rams lose out by sperm depletion. Nature 409, 681–682 (2001).

    CAS  PubMed  Google Scholar 

  133. Birkhead, T. R. Mechanisms of sperm competition in birds. Am. Sci. 84, 254–262 (1996).

    Google Scholar 

  134. Huck, U. W., Tonias, B. A. & Lisk, R. D. The effectiveness of competitive male inseminations in golden hamsters, Mesocricetus auratus, depends on an interaction of mating order, time delay between males and the time of mating relative to ovulation. Anim. Behav. 37, 674–680 (1989).

    Google Scholar 

  135. Ward, P. A possible explanation for cryptic female choice in the yellow dung fly Scathophaga stercoraria (L.). Ethology 104, 97–110 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Birkhead.

Related links

Related links

DATABASES

LocusLink

Acp26Aa

Acp36DE

Pgm

spe-12

FURTHER INFORMATION

Encyclopedia of Life Sciences

Sexual selection

Glossary

SEXUALLY ANTAGONISTIC GENE

A gene whose expression or the effect of whose expression is beneficial in one sex but harmful in the other.

ANISOGAMY

The condition in which the male and female gametes are of different sizes.

CLADE

A lineage of organisms or alleles that comprises an ancestor and all its descendants.

PROTURANS

(or Protura). Minute soil-inhabiting insects (hexapods) that are characterized by a lack of eyes and antennae, a 12-segmented abdomen and development by the indefinite addition of segments at each moult.

SPERM CAPACITATION

The state of physiological readiness to fertilize an ovum. Freshly ejaculated mammalian sperm are incapable of fertilization and require a period of time in the female tract to acquire this ability.

DIOECIOUS

Species in which the sexes are in separate individuals.

REPLACEMENT SITE

Any position within a gene at which a point mutation alters the encoded amino-acid sequence.

QUANTITATIVE TRAIT LOCUS

(QTL). A genetic locus that is identified through the statistical analysis of complex traits (such as plant height or body weight). These traits are typically affected by more than one gene and also by the environment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkhead, T., Pizzari, T. Postcopulatory sexual selection. Nat Rev Genet 3, 262–273 (2002). https://doi.org/10.1038/nrg774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing